Heuristische Herleitung der eindimensionalen zeitunabhängigen Schrödingergleichung: Unterschied zwischen den Versionen
Aus Schulphysikwiki
Zeile 12: | Zeile 12: | ||
*[http://homepages.physik.uni-muenchen.de/~milq/milq_basiskursp01.html Münchner Internetprojekt zur Lehrerfortbildung in Quantenmechanik] | *[http://homepages.physik.uni-muenchen.de/~milq/milq_basiskursp01.html Münchner Internetprojekt zur Lehrerfortbildung in Quantenmechanik] | ||
*[http://www.quantenphysik-schule.de/ Quantenphysik in der Schule] mit Simulationen der Wellenfunktion in verschiedenen Potentialen | *[http://www.quantenphysik-schule.de/ Quantenphysik in der Schule] mit Simulationen der Wellenfunktion in verschiedenen Potentialen | ||
+ | *[http://www.leifiphysik.de/themenbereiche/quantenmech-atommodell/geschichte Erwin Schrödinger und "seine" Gleichung] (LEIFI) |
Version vom 13. Dezember 2015, 12:21 Uhr
Für einen speziellen Fall kann man sich die Schrödingergleichung plausibel machen.
Ausgangspunkt: Vergleich zwischem klassischem Teilchen (zB Elektronenbahn) und Quant (Elektron beim Doppelspalt) deBroglie mit "halbklassischer" Konstruktion der Wellenlänge aus der Geschwindigkeit. (Geschwindigkeit kann nur ein klassisches Teilchen haben)
Zustandsfunktion "ebene Welle" sin(,,,) zweite Ableitung
Teilchenenergie als Faktor. Bei einem Potential die Differenz zur potentiellen Energie E-Epot. Die Differenz kann positiv ("AUfenthalt klassisch erlaubt" und negativ "Aufenthalt klassisch unmöglich" sein.
Links
- Münchner Internetprojekt zur Lehrerfortbildung in Quantenmechanik
- Quantenphysik in der Schule mit Simulationen der Wellenfunktion in verschiedenen Potentialen
- Erwin Schrödinger und "seine" Gleichung (LEIFI)