Zeigermodell und Wellengleichung einer ebenen harmonischen Welle: Unterschied zwischen den Versionen
(→Wellengleichung) |
(→Wellengleichung) |
||
Zeile 58: | Zeile 58: | ||
:<math>y(x,t) = \hat y \, \sin(\omega t - \Delta\varphi(x))</math> | :<math>y(x,t) = \hat y \, \sin(\omega t - \Delta\varphi(x))</math> | ||
− | Eine Schwingung, die eine halbe Wellenlänge | + | Eine Schwingung, die eine halbe Wellenlänge von der Quelle entfernt ist, hinkt gerade um <math>\pi</math> hinterher. Erst eine Schwingung, die eine ganze Wellenlänge von der Quelle entfernt ist, hinkt um <math>2 \pi</math> hinterher und ist damit wieder in Phase. Bestimmt man den Abstand <math>x</math> von der Quelle in Wellenlängen, so gibt dieser gerade die Phasenverschiebung in Einheiten von <math>2\,\pi</math> an: |
Bei diesem Beispiel beträgt die Wellenlänge <math>\lambda = 3\,\rm m</math>: | Bei diesem Beispiel beträgt die Wellenlänge <math>\lambda = 3\,\rm m</math>: | ||
:<math> | :<math> | ||
− | \begin{array}{ | + | \begin{array}{lcll} |
− | x | + | x = 6\,\rm m &=& 2\,\lambda &\Rightarrow& \Delta \varphi = 2\cdot 2\pi \approx 12{,}6\\ |
− | x | + | x = 4{,}5\,\rm m &=& 1{,5}\,\lambda &\Rightarrow& \Delta \varphi = 1{,5}\cdot 2\pi \approx 9{,}4\\ |
− | x | + | x = 3{,}3\,\rm m &=& 1{,}1\,\lambda &\Rightarrow& \Delta \varphi = 1{,}1\cdot 2\pi \approx 6{,}9\\ |
\end{array} | \end{array} |
Version vom 28. Januar 2016, 12:50 Uhr
(Kursstufe > Mechanische Wellen)

Im Falle einer räumlich unbegrenzten, linearen harmonischen Welle kann man die Welle relativ einfach beschreiben. In einer solchen Welle sind alle Schwingungen harmonisch und die Welle breitet sich nur längs einer Raumrichtung aus. Kugelwellen, Kreiswellen oder Zylinderwellen sind also keine solchen Wellen, ebene Wellen schon. Außerdem werden räumlich begrenzte Wellenpakete ausgeschlossen.
Bei einer Welle regt eine Schwingung ihren Nachbarn in
Ausbreitungsrichtung zu erzwungenen Schwingungen an. Alle schwingen mit
der gleichen Frequenz und der gleichen Amplitude. Die Schwinger hinken aber in
Ausbreitungsrichtung der ursprünglichen Schwingung hinterher, wodurch
sich eine Phasenverschiebung ergibt. Im Abstand einer halben
Wellenlänge beträgt sie gerade π
Inhaltsverzeichnis
[Verbergen]Zeigermodell


Eine Schwingung wird durch einen rotierenden Zeiger dargestellt. Eine Welle wird durch eine Kette von Schwingungen, also auch durch eine Kette von Zeigern dargestellt. Die Zeiger haben eine Phasenverschiebung zum Nachbarzeiger, weil das "Signal" verzögert weitergegeben wird.
Sehr anschaulich gibt diese Idee eine Spirale wieder. Sobald sie sich dreht, sieht man eine Welle nach oben oder unten laufen, je nach Drehrichtung.
Bei der Holzspirale entsprechen den einzelnen Holzstäben die Zeiger, die durch ihre Drehung von der Seite betrachtet die Schwingung an einem Ort beschreiben. Jedes Holzstäbchen wird zum Nachbarstäbchen ein bischen gedreht. (Genau genommen sieht man zwei Wellen, weil die Stäbchen zu lang sind.)
Zum Selberbasteln kann man sich diesen Schnittbogen ausschneiden und aufhängen.
Ähnlich anschaulich sind die auf einem Modell sich drehenden Perlen, die auch schrittweise um einen festen Winkel phasenverschoben sind.
Animationen
Diese Animation veranschaulicht die Zeigerdarstellung einer Welle. An jeder Stelle der Welle befindet sich ein drehender Zeiger. Leider drehen sich die Zeiger dabei nicht quer zur Ausbreitungsrichtung, sondern parallel dazu. Das entspricht einer Longitudinalwelle und nicht einer Transversalwelle. Anders ist die Darstellung zweidimensional nicht möglich, aber es kann auch verwirren.
Die Animation kann mit der Pausetaste links unten angehalten werden.
Der linke Zeiger gehört zum Anfangspunkt A der Welle. Der rechte Zeiger ist am blauen Punkt verschiebbar und gehört zur Stelle B. Angegeben ist der Phasenunterschied der Zeiger an den verschiedenen Orten.
Hier kann man sich die Geogebradatei herunterladen.

In dieser Animation von Jörg Bogendörfer sind viele Zeiger einer Welle dargestellt. Auch hier drehen sich die Zeiger nicht quer zur Ausbreitungsrichtung sondern parallel dazu.
Wellengleichung
Die Wellengleichung soll "sagen" wie groß die Auslenkung der Welle an einem bestimmten Ort und zu einem bestimmten Zeitpunkt ist. Dazu stellt man für alle beteiligten Schwinger eine Ortsfunktion auf. Da die Ortsfunktionen von der Position x abhängen, schreibt man yx(t)
Jede der einzelnen harmonischen Schwingungen hat die gleiche Frequenz und die gleiche Amplitude. Sie unterscheiden sich nur durch eine ortsabhängige Phasenverschiebung voneinander[1]:
- y(x,t)=ˆysin(ωt−Δφ(x))
Eine Schwingung, die eine halbe Wellenlänge von der Quelle entfernt ist, hinkt gerade um π
Bei diesem Beispiel beträgt die Wellenlänge λ=3m
- x=6m=2λ⇒Δφ=2⋅2π≈12,6x=4,5m=1,5λ⇒Δφ=1,5⋅2π≈9,4x=3,3m=1,1λ⇒Δφ=1,1⋅2π≈6,9
Die ortsabhängige Phasenverschiebung beträgt also
- Δφ(x)=xλ2π=2πλx.(Der Bruch 2πλwird auch als Wellenzahl bezeichnet.) Und es folgt:
- y(x,t)=ˆysin(ωt−2πλx)
Auch zwei weitere Umformungen dieser Gleichungen findet man häufig.
Die erste verwendet die Periodendauer statt der Frequenz und ist schön symmetrisch. Sie folgt aus ω=2πf=2πT
Die zweite verwendet die Ausbreitungsgeschwindigkeit der Welle. Sie folgt aus 2πλ=2πfλf=ωc
Im Abstand x
von der Quelle hinkt die Schwingung um die Phase Δφhinterher:- Δφ2π=xλΔφ=xλ2π=2πλx
Wellengleichung einer linearen harmonischen Welle:
y(x,t)=ˆysin(ωt−2πλx)=ˆysin(2π(tT−xλ))=ˆysin(2πλ(ct−x))
- Δφ2π=xλΔφ=xλ2π=2πλx
Beispiel
Es soll eine passende Gleichung für die drehende Windspirale aufgestellt werden.
Wir nehmen an, dass sie sich in der Sekunde zweimal dreht, der Radius beträgt drei Zentimeter und die Wellenlänge 13 Zentimeter. Dementsprechend gilt also:
- f=2Hz (ω=2π⋅2Hz);ˆy=3cm;λ=13cm
- y(x,t)=3cmsin(4πHz t−2π13cm x)≈3cmsin(12Hz t−0,481cm x)
Im Argument des Sinus beschreibt 121s
In der zweiten Version sieht das mit einer Periode von T=0,5s
- y(x,t)=3cmsin[2π(t0,5s−x13cm)]
Und in der dritten Version mit der Phasengeschwindigkeit c=λf=13cm⋅0,5Hz=2,6cms
- y(x,t)=3cmsin[2π13cm(2,6cmst−x)]≈3cmsin[0,481cm(2,6cmst−x)]
Folgerungen
Nun kann man für einen beliebigen Ort das Ortsgesetz der Schwingung bestimmen. Am Anfang (x=0) und nach 13 oder 26,... Zentimetern der Spirale gilt:
- y(t)=3cmsin(12Hz t)
Eine halbe Wellenlänge oder 6,5 cm weiter unten (und entsprechend 13 + 6,5 cm ...) hat man eine Phasenverschiebung von π
- y(t)=3cmsin(12Hz t−0,481cm 6,5cm)=3cmsin(12Hz t−3,12)
Man kann außerdem für eine feste Zeit für alle beteiligten Schwingungen (hier eigentlich drehende Zeiger) die momentane Elongation (Auslenkung) angeben. Das entspricht dem momentanen Aussehen der Welle.
Zu Beginn (t=0) sieht die Welle so aus:
- y(x)=3cmsin(−0,481cm x)
Nach einer viertel Sekunde ist sie genau eine halbe Wellenlänge weitergewandert:
- y(x)=3cmsin(12Hz 0,25s−0,481cm x)=3cmsin(3−0,481cm x)
Es ist sinnvoll sich
die Ergebnisse mal mit einem Taschenrechner oder einem Programm zeichnen zu lassen.
Links
- dynamische Arbeitsblätter zur Erarbeitung der Grundbegriffe der Wellenlehre (C. Wolfseher)
- Applet: Phasenzeiger einer Welle (Jörg Bogendörfer Didaktik der Physik Uni Erlangen)
Fußnoten
- Hochspringen ↑ Zur Vereinfachung beginnt die Zeitmessung (t=0s) wenn die Auslenkung im Ursprung (x=0m) gerade Null beträgt und ansteigt.