*: Unterschied zwischen den Versionen

Aus Schulphysikwiki
Wechseln zu: Navigation, Suche
(Leere Seite)
 
(360 dazwischenliegende Versionen des gleichen Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
 
__NOTOC__
 
__NOTOC__
==Aufgaben zu Schwingungen II==
+
==Leere Seite==
 +
{|
 +
|height="700px"|
 +
|}
  
====Eine "Schwingungswaage"====
+
==Aufgaben zur Akustik==
[[Datei:Waage_weltraum.jpg|thumb]]
+
====Schallquellen====
In der International Space Station (ISS) funktionieren die "normalen" Waagen nicht mehr, weil man dort die Gewichtskraft nicht messen kann. Aber trotzdem kann man sich auch dort wiegen!
+
1) Nenne einige Möglichkeiten Schall zu erzeugen. Was haben alle diese Möglichkeiten gemeinsam?
  
Der Sitz dieser "Weltraumwaage" ist zwischen zwei Federn gespannt und kann so frei schwingen.
+
2) Wie kann man die Schwingung einer Stimmgabel sichtbar machen?
  
*Erläutern Sie, warum man mit dieser Waage die Masse der Astronautin bestimmen kann. Benutzen Sie hierfür die Begriffe Trägheit und beschleunigende Kraft/Rückstellkraft.
+
3) Erkläre mit Text und Bild wie eine Schallplatte funktioniert.
*Wie verändert sich die Frequenz, wenn man die Amplitude der Schwingung verändert? Warum ist das für die Weltraumwaage sehr praktisch?
+
  
Der leere Stuhl hat eine Masse von <math>m_0=2\, \rm kg</math> und schwingt mit einer Periode von <math>T=0{,}33\, \rm s</math>.
+
4) Was macht man bei einer Pendeluhr, wenn sie ständig vor geht?
*Bestimmen Sie hieraus die Härte <math>D</math> der Feder.
+
  
Nun steigt die Astronautin in den Stuhl und die Periodendauer verlängert sich auf <math>T=1{,}87\, \rm s</math>.
+
5) Ein Ton hat eine Frequenz von 100 Hz, ein anderer von 500 Hz. Wie unterscheiden sich die beiden Töne, wenn du sie hörst?
*Welche Masse hat die Astronautin?
+
  
In einem Modellversuch schwingt ein Wagen zwischen zwei Federn. Die Federkonstante einer Feder beträgt D= 3 N/m. Zusammen wirken sie wie eine Feder mit der doppelten Federkonstante. Der Wagen hat eine Masse von 190,6g.
+
6) Erkläre den Begriff "Amplitude" an einem Beispiel.
  
*Wie schwer  ist eine am Wagen befestigte Batterie, wenn der Wagen mit ihr nun in 5,6 Sekunden viermal schwingt?
+
7) Ein Pendel schwingt mit einer Amplitude von 10cm und einer Periodendauer von 0,5 Sekunden. Erkläre mit Hilfe einer Zeichnung und einem Text was das bedeutet.
  
(Ein Video mit einer ähnlichen "body mass measurement device" der NASA findet sich [http://www.youtube.com/watch?v=8rt3udip7l4 hier].)
+
8) Mit einer verrußten Glasplatte wird die Schwingung einer Stimmgabel aufgezeichnet.
(Auch LEIFI beschäftigt sich [http://www.leifiphysik.de/themenbereiche/mechanische-schwingungen/aufgaben#lightbox=/themenbereiche/mechanische-schwingungen/lb/mechanische-schwingungen-massebestimmung-im-weltall-0 hier] damit.)
+
::Mit welcher Amplitude und mit welcher Frequenz schwingt die Stimmgabel?
 +
:::[[Datei:Aufgabe Wellenlinien Amplitude Frequenz Ton.png|thumb|407px|none|Die Wellenlinie der Stimmgabel.]]
 +
::Danach ändert man den Versuch zweimal ab und erzeugt zwei andere Wellenlininen.
 +
::Wie verändert sich der hörbare Ton gegenüber dem ersten Versuch?
 +
::Wie hat man wohl die anderen Wellenlinien erzeugt?
 +
:::[[Datei:Aufgabe Wellenlinien Amplitude Frequenz Ton1.png|thumb|407px|none|Die erste Veränderung.]]
 +
:::[[Datei:Aufgabe Wellenlinien Amplitude Frequenz Ton2.png|thumb|407px|none|Die zweite Veränderung.]]
  
====Schaukeltier II====
+
9) Ein Lautsprecher erzeugt zunächst einen leisen, hohen Ton. Dann werden die Einstellungen am angeschlossenen Sinusgenerator verändert und der Ton ist lauter. Was wurde verändert?
Große und kleine Kinder schaukeln auf dem gleichen Tier unterschiedlich. Was ist der Unterschied?
+
  
====Schwingmännchen III====
+
10) a) Zeichne mit roter Farbe in ein Koordinatensystem die Wellenlinie einer Schwingung mit einer Amplitude von 3cm und einer Periodendauer von 0,2 Sekunden.
[[Datei:Schwingmännchen.jpg|thumb|Eine Schwingprinzessin]]
+
:b) Zeichne dann mit blauer Farbe die Wellenline der Schwingung mit doppelter Frequenz aber halber Amplitude ein.
Das Männchen bringt 200g auf die Waage und verlängert beim Dranhängen die vorher unbelastete Feder um 40cm.
+
  
*Wieso beträgt die Federkonstante (D) gerade 1/20 N/cm = 0,05 N/cm?
+
11) Auf den Bildern siehst du die Aufzeichnungen verschiedener Klänge und Geräusche. Schreibe darunter wie der Klang / das Geräusch erzeugt worden ist.
*Zeichnen Sie den Zusammenhang von Rückstellkraft und Auslenkung, also den Graphen von <math>F(y)</math> in ein Koordinatensystem.
+
<gallery widths=200px heights150px  perrow=3 >
 +
Bild:Stimmgabel Oszilloskop.jpg|
 +
Bild:Knall.jpg|
 +
Bild:Stimmgabel Überlagerung.jpg|
 +
Bild:U.jpg
 +
Bild:A.jpg
 +
Bild:E.jpg
 +
Bild:I.jpg
 +
Bild:O.jpg
 +
</gallery>
  
*Mit welcher Frequenz wird das Männchen schwingen?  
+
====Schallausbreitung====
 +
'''1)''' Warum kann man im Weltall nichts hören? Beschreibe den Versuch, den wir dazu im Unterricht gemacht haben.
  
Hängt man das Männchen nur an die Hälfte der Feder, so wird bereits bei der halben Auslenkung die entsprechende Kraft erreicht. Die Federkonstante D verdoppelt sich also. Entsprechendes ergibt sich, wenn man zwei Federn aneinander hängt: Die Federkonstante halbiert sich.
+
'''2)''' Dein Nachbar spielt drei Stockwerke über dir Klavier. Du hörst es laut und deutlich, auch wenn die Fenster geschlossen sind. Woran liegt das? Auch dazu haben wir ein Experiment gemacht. Beschreibe es.
  
*An welcher Stelle der Feder muss man festhalten, damit sich dadurch die Frequenz verdoppelt?
+
'''3)''' Mache mehrere Zeichnungen von einer Spiralfeder, die zeigen, wie sich der Schall ausbreitet.
  
 +
'''4)''' Der Schall hat eine Geschwindigkeit von ca. 340 m/s. Ist es dabei egal, ob der Schall laut/leise hoch oder tief ist? Woher weißt du das?
  
====Schwingmännchen IV====
+
'''5)''' Zehn Sekunden nachdem du den Blitz siehst, kannst du den Donner hören. Wie weit ist das Gewitter entfernt? Rechne einmal mit der einfachen Gewitterregel und einmal mit der Schallgeschwindigkeit von 340 m/s.
Wie kann man es erreichen, dass das Männchen "doppelt so schnell", also mit doppelter Frequenz, schwingt?
+
  
====Schwingmännchen V====
+
'''6)''' Ein Gewitter ist zwei Kilometer entfernt. Welche Zeit vergeht zwischen dem Blitz und dem Donner?  
Wie verändert sich die Frequenz und die Energie des Männchens, wenn sich
+
*die Federkonstante verdoppelt
+
*die Masse verdoppelt
+
*die Amplitude verdoppelt
+
und dabei die jeweils anderen Größen unverändert bleiben?
+
  
====Energie====
+
'''7)''' Zur Messung der Schallgeschwindigkeit erzeugt eine Schülerin mit einer Startklappe einen lauten Knall.
Welche Energie hat eine schwingender Körper der Masse 1kg, wenn er eine Periodendauer von 1s und eine Amplitude von 1cm hat?
+
:In einer Entfernung von 200m stehen 16 Schülerinnen und Schüler, die vorher alle ihre Stoppuhren gleichzeitig gestartet haben. die Hälfte steht mit dem Gesicht zur Klappe und stoppt die Uhr, wenn sie sehen, wie sich die Klappe schließt. Die andere Hälfte kann die Klappe nicht sehen und stoppt die Uhr, wenn sie den Knall hören.
 +
Zeiten Klappe schließen sehen (in sec): 10,52 10,39 10,50 10,58 10,43 10,59 10,48 10,54
 +
Zeiten Knall hören (in sec):            11,15 11,08 11,09 11,20 11,05 11,12 11,08 11,11
 +
:Bestimme daraus den gemessenen Wert für die Schallgeschwindigkeit.
  
====Energie II====
+
'''8)''' Bei einer Messung der Schallgeschwindigkeit mit einem Echo starten sechs Schüler:innen ihre Uhren gleichzeitig. Dann wird mit einer Klappe ein Knall erzeugt. Drei stoppen ihre Uhren, wenn sie sehen, wie der Knall erzeugt wird (sie hören ihn auch sofort). Drei stoppen ihre Uhren, wenn sie das Echo hören. Man folgende Messwerte:
Wie muss ein Körper der Masse 1kg schwingen, damit die Schwingung 1J Energie hat?
+
Strecke vom Ausgangspunkt bis zur Wand: 55m
 +
Zeiten Knall hören (in sec): 5,34 5,48 5,25
 +
Zeiten Echo hören (in sec):  5,62 5,78 5,64
 +
::Bestimme daraus den gemessenen Wert für die Schallgeschwindigkeit.
  
====Energie III====
+
====Ohr und Lärm====
Zwei gleichschwere Körper schwingen mit der gleichen Amplitude, aber der eine doppelt so schnell wie der andere. Vergleichen sie die Energiemengen.
+
#Zeichne ein menschliches Ohr im Querschnitt und benenne die einzelnen Teile.
 +
#Erkläre wie das Hören des Ohres funktioniert.
 +
#Schall der laut ist, muss nicht als Lärm empfunden werden und umgekehrt kann ganz leiser Schall sehr störend sein. Finde passende  Beispielsituationen.
 +
#Antonia benutzt eine spezielle Pfeife, um ihren Hund zu rufen. Wenn sie hineinpustet hört sie nur ein leises Pfeifen, dann kommt er gleich angerannt, auch wenn er weit weg war. Antonias Opa dagegen hat von der Pfeife überhaupt nichts gehört. Erkläre!
 +
#Ein Schallpegelmessgerät misst die Lautstärke in einem Klassenzimmer zu 60db. Erkläre die Bedeutung des Messwertes, indem du erklärst was 0db sind und wieviel mal lauter 60db sind.
 +
#Ab welcher Lautstärke können Hörschäden auftreten?
 +
#Warum ist es so leise, wenn Schnee gefallen ist?
 +
#Mache je eine Zeichnung wie sich der Schall von einem sprechendem Menschen in einem Klassenzimmer ausbreitet:
 +
##Ein Zimmer ohne Schalldämmung.
 +
##Ein Zimmer mit Schalldämmung an der Decke.
 +
##Ein Zimmer mit Schalldämmung an Decke und einer Wand.
 +
#Erkläre, warum man sich in einem Zimmer ohne Schalldämmung so schlecht unterhalten kann.

Aktuelle Version vom 4. Oktober 2023, 10:19 Uhr

Leere Seite

Aufgaben zur Akustik

Schallquellen

1) Nenne einige Möglichkeiten Schall zu erzeugen. Was haben alle diese Möglichkeiten gemeinsam?

2) Wie kann man die Schwingung einer Stimmgabel sichtbar machen?

3) Erkläre mit Text und Bild wie eine Schallplatte funktioniert.

4) Was macht man bei einer Pendeluhr, wenn sie ständig vor geht?

5) Ein Ton hat eine Frequenz von 100 Hz, ein anderer von 500 Hz. Wie unterscheiden sich die beiden Töne, wenn du sie hörst?

6) Erkläre den Begriff "Amplitude" an einem Beispiel.

7) Ein Pendel schwingt mit einer Amplitude von 10cm und einer Periodendauer von 0,5 Sekunden. Erkläre mit Hilfe einer Zeichnung und einem Text was das bedeutet.

8) Mit einer verrußten Glasplatte wird die Schwingung einer Stimmgabel aufgezeichnet.

Mit welcher Amplitude und mit welcher Frequenz schwingt die Stimmgabel?
Die Wellenlinie der Stimmgabel.
Danach ändert man den Versuch zweimal ab und erzeugt zwei andere Wellenlininen.
Wie verändert sich der hörbare Ton gegenüber dem ersten Versuch?
Wie hat man wohl die anderen Wellenlinien erzeugt?
Die erste Veränderung.
Die zweite Veränderung.

9) Ein Lautsprecher erzeugt zunächst einen leisen, hohen Ton. Dann werden die Einstellungen am angeschlossenen Sinusgenerator verändert und der Ton ist lauter. Was wurde verändert?

10) a) Zeichne mit roter Farbe in ein Koordinatensystem die Wellenlinie einer Schwingung mit einer Amplitude von 3cm und einer Periodendauer von 0,2 Sekunden.

b) Zeichne dann mit blauer Farbe die Wellenline der Schwingung mit doppelter Frequenz aber halber Amplitude ein.

11) Auf den Bildern siehst du die Aufzeichnungen verschiedener Klänge und Geräusche. Schreibe darunter wie der Klang / das Geräusch erzeugt worden ist.

Schallausbreitung

1) Warum kann man im Weltall nichts hören? Beschreibe den Versuch, den wir dazu im Unterricht gemacht haben.

2) Dein Nachbar spielt drei Stockwerke über dir Klavier. Du hörst es laut und deutlich, auch wenn die Fenster geschlossen sind. Woran liegt das? Auch dazu haben wir ein Experiment gemacht. Beschreibe es.

3) Mache mehrere Zeichnungen von einer Spiralfeder, die zeigen, wie sich der Schall ausbreitet.

4) Der Schall hat eine Geschwindigkeit von ca. 340 m/s. Ist es dabei egal, ob der Schall laut/leise hoch oder tief ist? Woher weißt du das?

5) Zehn Sekunden nachdem du den Blitz siehst, kannst du den Donner hören. Wie weit ist das Gewitter entfernt? Rechne einmal mit der einfachen Gewitterregel und einmal mit der Schallgeschwindigkeit von 340 m/s.

6) Ein Gewitter ist zwei Kilometer entfernt. Welche Zeit vergeht zwischen dem Blitz und dem Donner?

7) Zur Messung der Schallgeschwindigkeit erzeugt eine Schülerin mit einer Startklappe einen lauten Knall.

In einer Entfernung von 200m stehen 16 Schülerinnen und Schüler, die vorher alle ihre Stoppuhren gleichzeitig gestartet haben. die Hälfte steht mit dem Gesicht zur Klappe und stoppt die Uhr, wenn sie sehen, wie sich die Klappe schließt. Die andere Hälfte kann die Klappe nicht sehen und stoppt die Uhr, wenn sie den Knall hören.
Zeiten Klappe schließen sehen (in sec): 10,52 10,39 10,50 10,58 10,43 10,59 10,48 10,54
Zeiten Knall hören (in sec):            11,15 11,08 11,09 11,20 11,05 11,12 11,08 11,11
Bestimme daraus den gemessenen Wert für die Schallgeschwindigkeit.

8) Bei einer Messung der Schallgeschwindigkeit mit einem Echo starten sechs Schüler:innen ihre Uhren gleichzeitig. Dann wird mit einer Klappe ein Knall erzeugt. Drei stoppen ihre Uhren, wenn sie sehen, wie der Knall erzeugt wird (sie hören ihn auch sofort). Drei stoppen ihre Uhren, wenn sie das Echo hören. Man folgende Messwerte:

Strecke vom Ausgangspunkt bis zur Wand: 55m
Zeiten Knall hören (in sec): 5,34 5,48 5,25
Zeiten Echo hören (in sec):  5,62 5,78 5,64
Bestimme daraus den gemessenen Wert für die Schallgeschwindigkeit.

Ohr und Lärm

  1. Zeichne ein menschliches Ohr im Querschnitt und benenne die einzelnen Teile.
  2. Erkläre wie das Hören des Ohres funktioniert.
  3. Schall der laut ist, muss nicht als Lärm empfunden werden und umgekehrt kann ganz leiser Schall sehr störend sein. Finde passende Beispielsituationen.
  4. Antonia benutzt eine spezielle Pfeife, um ihren Hund zu rufen. Wenn sie hineinpustet hört sie nur ein leises Pfeifen, dann kommt er gleich angerannt, auch wenn er weit weg war. Antonias Opa dagegen hat von der Pfeife überhaupt nichts gehört. Erkläre!
  5. Ein Schallpegelmessgerät misst die Lautstärke in einem Klassenzimmer zu 60db. Erkläre die Bedeutung des Messwertes, indem du erklärst was 0db sind und wieviel mal lauter 60db sind.
  6. Ab welcher Lautstärke können Hörschäden auftreten?
  7. Warum ist es so leise, wenn Schnee gefallen ist?
  8. Mache je eine Zeichnung wie sich der Schall von einem sprechendem Menschen in einem Klassenzimmer ausbreitet:
    1. Ein Zimmer ohne Schalldämmung.
    2. Ein Zimmer mit Schalldämmung an der Decke.
    3. Ein Zimmer mit Schalldämmung an Decke und einer Wand.
  9. Erkläre, warum man sich in einem Zimmer ohne Schalldämmung so schlecht unterhalten kann.