*: Unterschied zwischen den Versionen

Aus Schulphysikwiki
Wechseln zu: Navigation, Suche
(Leere Seite)
 
(357 dazwischenliegende Versionen des gleichen Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
 
__NOTOC__
 
__NOTOC__
==Praktikum: Wovon hängt die Frequenz des frei schwingenden Pendels ab?==
+
==Leere Seite==
[[Datei:Praktikum Fadenpendel Aufbau.jpg|thumb|]]
+
{|
* Untersuchen Sie experimentell, wovon die Frequenz, bzw. die Schwingungsdauer eines Pendels abhängt.
+
|height="700px"|
 +
|}
  
* Als vereinfachtes Modell der Schaukel oder des Uhrenpendels nehmen wir einen an einem Faden hängenden Gegenstand. Wir nehmen an, dass die Ausdehnung des Gegenstandes klein ist gegenüber der Fadenlänge. In der Vereinfachung ist die Masse in einem Punkt, dem Schwerpunkt, konzentriert und der Faden masselos. Die Pendellänge ist dann der Abstand vom Aufhängepunkt zum Schwerpunkt. Eine solche Abstraktion heißt auch "mathematisches Pendel".  
+
==Aufgaben zur Akustik==
 +
====Schallquellen====
 +
1) Nenne einige Möglichkeiten Schall zu erzeugen. Was haben alle diese Möglichkeiten gemeinsam?
  
Mögliche Beeinflussungen durch:
+
2) Wie kann man die Schwingung einer Stimmgabel sichtbar machen?
  
* Pendellänge l
+
3) Erkläre mit Text und Bild wie eine Schallplatte funktioniert.
* Masse <math>m</math>
+
* Amplitude  <math>\hat y</math>
+
* Reibung
+
* Antrieb
+
Man darf immer nur eine Größe variieren und dann jeweils die Periode messen. Misst man z.B. für verschiedene Amplituden die Periode erhält man einen Zusammenhang zwischen Amplitude und Periodendauer, der streng genommen nur für die gewählte Länge, Masse usw. gilt.
+
<br>Ändert sich die Periode bei Variation einer Größe nicht, so ist sie davon unabhängig.
+
  
Den Zusammenhang zwischen der Periodendauer und der Reibung bzw. des Antriebs kann man mit diesem Versuchsaufbau nicht untersuchen.
+
4) Was macht man bei einer Pendeluhr, wenn sie ständig vor geht?
  
;Aufbau:
+
5) Ein Ton hat eine Frequenz von 100 Hz, ein anderer von 500 Hz. Wie unterscheiden sich die beiden Töne, wenn du sie hörst?
[[Bild:Fadenpendel_Versuchsaufbau.jpg|thumb|right|Das Fadenpendel]]
+
  
Mittels einer Klemme wird eine Stange senkrecht an einem Tisch angebracht. An dieser Stange wird am oberen Ende eine kleine Querstange befestigt und an dieser eine Klemme.
+
6) Erkläre den Begriff "Amplitude" an einem Beispiel.
  
Mit der Klemme wird nun ein Faden befestigt, an dessen Ende ein kleines Gewicht hängt.
+
7) Ein Pendel schwingt mit einer Amplitude von 10cm und einer Periodendauer von 0,5 Sekunden. Erkläre mit Hilfe einer Zeichnung und einem Text was das bedeutet.
  
*Zur Untersuchung der Abhängigkeit von einer Größe muß diese variiert und alle anderen konstant gehalten werden.
+
8) Mit einer verrußten Glasplatte wird die Schwingung einer Stimmgabel aufgezeichnet.
 +
::Mit welcher Amplitude und mit welcher Frequenz schwingt die Stimmgabel?
 +
:::[[Datei:Aufgabe Wellenlinien Amplitude Frequenz Ton.png|thumb|407px|none|Die Wellenlinie der Stimmgabel.]]
 +
::Danach ändert man den Versuch zweimal ab und erzeugt zwei andere Wellenlininen.
 +
::Wie verändert sich der hörbare Ton gegenüber dem ersten Versuch?
 +
::Wie hat man wohl die anderen Wellenlinien erzeugt?
 +
:::[[Datei:Aufgabe Wellenlinien Amplitude Frequenz Ton1.png|thumb|407px|none|Die erste Veränderung.]]
 +
:::[[Datei:Aufgabe Wellenlinien Amplitude Frequenz Ton2.png|thumb|407px|none|Die zweite Veränderung.]]
  
;Beobachtung/Messwerte:
+
9) Ein Lautsprecher erzeugt zunächst einen leisen, hohen Ton. Dann werden die Einstellungen am angeschlossenen Sinusgenerator verändert und der Ton ist lauter. Was wurde verändert?
  
*Abhängigkeit von der Pendellänge l:
+
10) a) Zeichne mit roter Farbe in ein Koordinatensystem die Wellenlinie einer Schwingung mit einer Amplitude von 3cm und einer Periodendauer von 0,2 Sekunden.
:Die Pendellängen sollen ca. folgende Werte haben: 0,05m 0,1m 0,2m 0,3m 0,4m 0,5m.
+
:b) Zeichne dann mit blauer Farbe die Wellenline der Schwingung mit doppelter Frequenz aber halber Amplitude ein.
  
Masse <math>m \rm \text{ in } kg</math>:
+
11) Auf den Bildern siehst du die Aufzeichnungen verschiedener Klänge und Geräusche. Schreibe darunter wie der Klang / das Geräusch erzeugt worden ist.
 +
<gallery widths=200px heights150px  perrow=3 >
 +
Bild:Stimmgabel Oszilloskop.jpg|
 +
Bild:Knall.jpg|
 +
Bild:Stimmgabel Überlagerung.jpg|
 +
Bild:U.jpg
 +
Bild:A.jpg
 +
Bild:E.jpg
 +
Bild:I.jpg
 +
Bild:O.jpg
 +
</gallery>
  
Amplitude <math>\hat y  \rm \text{ in } ^{\circ} </math>:
+
====Schallausbreitung====
 +
'''1)''' Warum kann man im Weltall nichts hören? Beschreibe den Versuch, den wir dazu im Unterricht gemacht haben.
  
{| class="wikitable"
+
'''2)''' Dein Nachbar spielt drei Stockwerke über dir Klavier. Du hörst es laut und deutlich, auch wenn die Fenster geschlossen sind. Woran liegt das? Auch dazu haben wir ein Experiment gemacht. Beschreibe es.
|-
+
||<math>l  \rm \text{ in } m</math>
+
| style="height:30px; width:80px;" |   
+
| style="height:30px; width:80px;" |   
+
| style="height:30px; width:80px;" |   
+
| style="height:30px; width:80px;" |   
+
| style="height:30px; width:80px;" |   
+
| style="height:30px; width:80px;" |
+
|-
+
|<math>10 \, T \rm \text{ in } s</math>
+
| style="height:30px; width:80px;" |   
+
| style="height:30px; width:50px;" |   
+
| style="height:30px; width:50px;" |   
+
| style="height:30px; width:50px;" |   
+
| style="height:30px; width:50px;" |   
+
| style="height:30px; width:50px;" |
+
|-
+
|<math>T \rm \text{ in } s</math>
+
| style="height:30px; width:80px;" |   
+
| style="height:30px; width:50px;" |   
+
| style="height:30px; width:50px;" |   
+
| style="height:30px; width:50px;" |   
+
| style="height:30px; width:50px;" |   
+
| style="height:30px; width:50px;" |
+
|-
+
|<math> \frac{T}{l} \text{ in } {\rm \frac{s}{m} }</math>
+
| style="height:30px; width:80px;" |   
+
| style="height:30px; width:50px;" |   
+
| style="height:30px; width:50px;" |   
+
| style="height:30px; width:50px;" |   
+
| style="height:30px; width:50px;" |   
+
| style="height:30px; width:50px;" |
+
|-
+
|<math> \frac{T}{l^2} \text{ in } {\rm \frac{s}{m^2} }</math>
+
| style="height:30px; width:80px;" |   
+
| style="height:30px; width:50px;" |   
+
| style="height:30px; width:50px;" |   
+
| style="height:30px; width:50px;" |   
+
| style="height:30px; width:50px;" |   
+
| style="height:30px; width:50px;" |
+
|-
+
|<math> \frac{T}{\sqrt{l}} \text{ in } {\rm \frac{s}{\sqrt{m}} }</math>
+
| style="height:30px; width:80px;" |   
+
| style="height:30px; width:50px;" |   
+
| style="height:30px; width:50px;" |   
+
| style="height:30px; width:50px;" |   
+
| style="height:30px; width:50px;" |   
+
| style="height:30px; width:50px;" |
+
|}
+
  
*Abhängigkeit von der Masse m:
+
'''3)''' Mache mehrere Zeichnungen von einer Spiralfeder, die zeigen, wie sich der Schall ausbreitet.
:Durch Anhängen eines zweiten Gewichts kann man die Masse verdoppeln oder man verwendet verschiedene Gegenstände.
+
  
Pendellänge <math>l \rm \text{ in } m</math>:
+
'''4)''' Der Schall hat eine Geschwindigkeit von ca. 340 m/s. Ist es dabei egal, ob der Schall laut/leise hoch oder tief ist? Woher weißt du das?
 
+
Amplitude <math>\hat y \rm \text{ in } ^{\circ} </math>:
+
 
+
{| class="wikitable"
+
|-
+
| <math>m \rm \text{ in } kg</math>
+
| style="height:30px; width:80px;" | 
+
| style="height:30px; width:80px;" | 
+
|-
+
|<math>10 \, T \rm \text{ in } s</math>
+
| style="height:30px; width:80px;" |   
+
| style="height:30px; width:50px;" | 
+
|-
+
|<math>T \rm \text{ in } s</math>
+
| style="height:30px; width:80px;" |   
+
| style="height:30px; width:50px;" |
+
|}
+
 
+
*Abhängigkeit von der Amplitude <math>\hat y</math>:
+
 
+
Masse <math>m \rm \text{ in } kg</math>:   
+
 
+
Pendellänge <math>l  \rm \text{ in } m</math>:
+
 
+
{| class="wikitable"
+
|-
+
|<math>\hat y \rm \text{ in } ^{\circ} </math>
+
| style="height:30px; width:80px;" |  5°
+
| style="height:30px; width:80px;" |  10° 
+
| style="height:30px; width:80px;" |  20°
+
| style="height:30px; width:80px;" |  40°
+
| style="height:30px; width:80px;" |  60°
+
| style="height:30px; width:80px;" |  80°
+
|-
+
|<math>10 \, T \rm \text{ in } s</math>
+
| style="height:30px; width:80px;" |   
+
| style="height:30px; width:50px;" |   
+
| style="height:30px; width:50px;" |   
+
| style="height:30px; width:50px;" |   
+
| style="height:30px; width:50px;" |   
+
| style="height:30px; width:50px;" |
+
|-
+
|<math>T \rm \text{ in } s</math>
+
| style="height:30px; width:80px;" |   
+
| style="height:30px; width:50px;" |   
+
| style="height:30px; width:50px;" |   
+
| style="height:30px; width:50px;" |   
+
| style="height:30px; width:50px;" |   
+
| style="height:30px; width:50px;" |
+
|-
+
|<math> \frac{T}{\hat y} \text{ in } {\rm \frac{s}{\circ} }</math>
+
| style="height:30px; width:80px;" |   
+
| style="height:30px; width:50px;" |   
+
| style="height:30px; width:50px;" |   
+
| style="height:30px; width:50px;" |   
+
| style="height:30px; width:50px;" |   
+
| style="height:30px; width:50px;" |
+
|-
+
|<math> \frac{T}{\hat y^2} \text{ in } {\rm \frac{s}{\circ ^2} }</math>
+
| style="height:30px; width:80px;" |   
+
| style="height:30px; width:50px;" |   
+
| style="height:30px; width:50px;" |   
+
| style="height:30px; width:50px;" |   
+
| style="height:30px; width:50px;" |   
+
| style="height:30px; width:50px;" |
+
|-
+
|<math> \frac{T}{\sqrt{\hat y}} \text{ in } {\rm \frac{s}{\sqrt{\circ}} }</math>
+
| style="height:30px; width:80px;" |   
+
| style="height:30px; width:50px;" |   
+
| style="height:30px; width:50px;" |   
+
| style="height:30px; width:50px;" |   
+
| style="height:30px; width:50px;" |   
+
| style="height:30px; width:50px;" |
+
|}
+
  
;Erklärung/Auswertung:
+
'''5)''' Zehn Sekunden nachdem du den Blitz siehst, kannst du den Donner hören. Wie weit ist das Gewitter entfernt? Rechne einmal mit der einfachen Gewitterregel und einmal mit der Schallgeschwindigkeit von 340 m/s.
  
Die gemessenen Zusammenhänge werden jeweils in ein Koordinatensystem gezeichnet. Man trägt zum Beispiel die Periodendauer (y-Achse) über die halbe Stangenlänge (x-Achse) auf.
+
'''6)''' Ein Gewitter ist zwei Kilometer entfernt. Welche Zeit vergeht zwischen dem Blitz und dem Donner?
  
Um einen rechnerischen Zusammenhang zwischen den Größen zu finden, sucht man nach konstanten Quotienten oder Produkten der Messgrößen. Diese werden in die Tabelle eingetragen.  
+
'''7)''' Zur Messung der Schallgeschwindigkeit erzeugt eine Schülerin mit einer Startklappe einen lauten Knall.
 +
:In einer Entfernung von 200m stehen 16 Schülerinnen und Schüler, die vorher alle ihre Stoppuhren gleichzeitig gestartet haben. die Hälfte steht mit dem Gesicht zur Klappe und stoppt die Uhr, wenn sie sehen, wie sich die Klappe schließt. Die andere Hälfte kann die Klappe nicht sehen und stoppt die Uhr, wenn sie den Knall hören.
 +
Zeiten Klappe schließen sehen (in sec): 10,52 10,39 10,50 10,58 10,43 10,59 10,48 10,54
 +
Zeiten Knall hören (in sec):            11,15 11,08 11,09 11,20 11,05 11,12 11,08 11,11
 +
:Bestimme daraus den gemessenen Wert für die Schallgeschwindigkeit.  
  
Als Beispiel hier der Zusammenhang zwischen Periodendauer und Pendellänge. Es kommen mehrere Möglichkeiten in Betracht:
+
'''8)''' Bei einer Messung der Schallgeschwindigkeit mit einem Echo starten sechs Schüler:innen ihre Uhren gleichzeitig. Dann wird mit einer Klappe ein Knall erzeugt. Drei stoppen ihre Uhren, wenn sie sehen, wie der Knall erzeugt wird (sie hören ihn auch sofort). Drei stoppen ihre Uhren, wenn sie das Echo hören. Man folgende Messwerte:
#<math>T = c \cdot l \quad \Leftrightarrow \quad c = \frac{T}{l}</math>
+
Strecke vom Ausgangspunkt bis zur Wand: 55m
#<math>T = c \cdot l^2 \quad \Leftrightarrow \quad c = \frac{T}{l^2}</math>
+
Zeiten Knall hören (in sec): 5,34 5,48 5,25
#<math>T = c \cdot \sqrt{l} \quad \Leftrightarrow \quad c = \frac{T}{\sqrt{l}}</math>
+
Zeiten Echo hören (in sec):  5,62 5,78 5,64
 +
::Bestimme daraus den gemessenen Wert für die Schallgeschwindigkeit.
  
Man berechnet daher alle Quotienten und untersucht, ob ein Quotient für alle Messungen ungefähr gleich bleibt. Wenn dies der Fall ist, so nimmt man den Mittelwert der Quotienten, um damit eine Formel aufzustellen.
+
====Ohr und Lärm====
 +
#Zeichne ein menschliches Ohr im Querschnitt und benenne die einzelnen Teile.
 +
#Erkläre wie das Hören des Ohres funktioniert.
 +
#Schall der laut ist, muss nicht als Lärm empfunden werden und umgekehrt kann ganz leiser Schall sehr störend sein. Finde passende  Beispielsituationen.
 +
#Antonia benutzt eine spezielle Pfeife, um ihren Hund zu rufen. Wenn sie hineinpustet hört sie nur ein leises Pfeifen, dann kommt er gleich angerannt, auch wenn er weit weg war. Antonias Opa dagegen hat von der Pfeife überhaupt nichts gehört. Erkläre!
 +
#Ein Schallpegelmessgerät misst die Lautstärke in einem Klassenzimmer zu 60db. Erkläre die Bedeutung des Messwertes, indem du erklärst was 0db sind und wieviel mal lauter 60db sind.
 +
#Ab welcher Lautstärke können Hörschäden auftreten?
 +
#Warum ist es so leise, wenn Schnee gefallen ist?
 +
#Mache je eine Zeichnung wie sich der Schall von einem sprechendem Menschen in einem Klassenzimmer ausbreitet:
 +
##Ein Zimmer ohne Schalldämmung.
 +
##Ein Zimmer mit Schalldämmung an der Decke.
 +
##Ein Zimmer mit Schalldämmung an Decke und einer Wand.
 +
#Erkläre, warum man sich in einem Zimmer ohne Schalldämmung so schlecht unterhalten kann.

Aktuelle Version vom 4. Oktober 2023, 10:19 Uhr

Leere Seite

Aufgaben zur Akustik

Schallquellen

1) Nenne einige Möglichkeiten Schall zu erzeugen. Was haben alle diese Möglichkeiten gemeinsam?

2) Wie kann man die Schwingung einer Stimmgabel sichtbar machen?

3) Erkläre mit Text und Bild wie eine Schallplatte funktioniert.

4) Was macht man bei einer Pendeluhr, wenn sie ständig vor geht?

5) Ein Ton hat eine Frequenz von 100 Hz, ein anderer von 500 Hz. Wie unterscheiden sich die beiden Töne, wenn du sie hörst?

6) Erkläre den Begriff "Amplitude" an einem Beispiel.

7) Ein Pendel schwingt mit einer Amplitude von 10cm und einer Periodendauer von 0,5 Sekunden. Erkläre mit Hilfe einer Zeichnung und einem Text was das bedeutet.

8) Mit einer verrußten Glasplatte wird die Schwingung einer Stimmgabel aufgezeichnet.

Mit welcher Amplitude und mit welcher Frequenz schwingt die Stimmgabel?
Die Wellenlinie der Stimmgabel.
Danach ändert man den Versuch zweimal ab und erzeugt zwei andere Wellenlininen.
Wie verändert sich der hörbare Ton gegenüber dem ersten Versuch?
Wie hat man wohl die anderen Wellenlinien erzeugt?
Die erste Veränderung.
Die zweite Veränderung.

9) Ein Lautsprecher erzeugt zunächst einen leisen, hohen Ton. Dann werden die Einstellungen am angeschlossenen Sinusgenerator verändert und der Ton ist lauter. Was wurde verändert?

10) a) Zeichne mit roter Farbe in ein Koordinatensystem die Wellenlinie einer Schwingung mit einer Amplitude von 3cm und einer Periodendauer von 0,2 Sekunden.

b) Zeichne dann mit blauer Farbe die Wellenline der Schwingung mit doppelter Frequenz aber halber Amplitude ein.

11) Auf den Bildern siehst du die Aufzeichnungen verschiedener Klänge und Geräusche. Schreibe darunter wie der Klang / das Geräusch erzeugt worden ist.

Schallausbreitung

1) Warum kann man im Weltall nichts hören? Beschreibe den Versuch, den wir dazu im Unterricht gemacht haben.

2) Dein Nachbar spielt drei Stockwerke über dir Klavier. Du hörst es laut und deutlich, auch wenn die Fenster geschlossen sind. Woran liegt das? Auch dazu haben wir ein Experiment gemacht. Beschreibe es.

3) Mache mehrere Zeichnungen von einer Spiralfeder, die zeigen, wie sich der Schall ausbreitet.

4) Der Schall hat eine Geschwindigkeit von ca. 340 m/s. Ist es dabei egal, ob der Schall laut/leise hoch oder tief ist? Woher weißt du das?

5) Zehn Sekunden nachdem du den Blitz siehst, kannst du den Donner hören. Wie weit ist das Gewitter entfernt? Rechne einmal mit der einfachen Gewitterregel und einmal mit der Schallgeschwindigkeit von 340 m/s.

6) Ein Gewitter ist zwei Kilometer entfernt. Welche Zeit vergeht zwischen dem Blitz und dem Donner?

7) Zur Messung der Schallgeschwindigkeit erzeugt eine Schülerin mit einer Startklappe einen lauten Knall.

In einer Entfernung von 200m stehen 16 Schülerinnen und Schüler, die vorher alle ihre Stoppuhren gleichzeitig gestartet haben. die Hälfte steht mit dem Gesicht zur Klappe und stoppt die Uhr, wenn sie sehen, wie sich die Klappe schließt. Die andere Hälfte kann die Klappe nicht sehen und stoppt die Uhr, wenn sie den Knall hören.
Zeiten Klappe schließen sehen (in sec): 10,52 10,39 10,50 10,58 10,43 10,59 10,48 10,54
Zeiten Knall hören (in sec):            11,15 11,08 11,09 11,20 11,05 11,12 11,08 11,11
Bestimme daraus den gemessenen Wert für die Schallgeschwindigkeit.

8) Bei einer Messung der Schallgeschwindigkeit mit einem Echo starten sechs Schüler:innen ihre Uhren gleichzeitig. Dann wird mit einer Klappe ein Knall erzeugt. Drei stoppen ihre Uhren, wenn sie sehen, wie der Knall erzeugt wird (sie hören ihn auch sofort). Drei stoppen ihre Uhren, wenn sie das Echo hören. Man folgende Messwerte:

Strecke vom Ausgangspunkt bis zur Wand: 55m
Zeiten Knall hören (in sec): 5,34 5,48 5,25
Zeiten Echo hören (in sec):  5,62 5,78 5,64
Bestimme daraus den gemessenen Wert für die Schallgeschwindigkeit.

Ohr und Lärm

  1. Zeichne ein menschliches Ohr im Querschnitt und benenne die einzelnen Teile.
  2. Erkläre wie das Hören des Ohres funktioniert.
  3. Schall der laut ist, muss nicht als Lärm empfunden werden und umgekehrt kann ganz leiser Schall sehr störend sein. Finde passende Beispielsituationen.
  4. Antonia benutzt eine spezielle Pfeife, um ihren Hund zu rufen. Wenn sie hineinpustet hört sie nur ein leises Pfeifen, dann kommt er gleich angerannt, auch wenn er weit weg war. Antonias Opa dagegen hat von der Pfeife überhaupt nichts gehört. Erkläre!
  5. Ein Schallpegelmessgerät misst die Lautstärke in einem Klassenzimmer zu 60db. Erkläre die Bedeutung des Messwertes, indem du erklärst was 0db sind und wieviel mal lauter 60db sind.
  6. Ab welcher Lautstärke können Hörschäden auftreten?
  7. Warum ist es so leise, wenn Schnee gefallen ist?
  8. Mache je eine Zeichnung wie sich der Schall von einem sprechendem Menschen in einem Klassenzimmer ausbreitet:
    1. Ein Zimmer ohne Schalldämmung.
    2. Ein Zimmer mit Schalldämmung an der Decke.
    3. Ein Zimmer mit Schalldämmung an Decke und einer Wand.
  9. Erkläre, warum man sich in einem Zimmer ohne Schalldämmung so schlecht unterhalten kann.