*: Unterschied zwischen den Versionen

Aus Schulphysikwiki
Wechseln zu: Navigation, Suche
(493 dazwischenliegende Versionen des gleichen Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
 
__NOTOC__
 
__NOTOC__
==Aufgaben zu Schwingungen I==
+
{|
====Energieformen====
+
|height="800px"|
Nennen Sie zwei verschiedene Beispiele für eine Schwingung und beschreiben Sie kurz wann dabei welche Energieformen auftreten.
+
|}
 +
==Elektrischer Energietransport: Beladungsmaß und Leistung==
 +
====Versuch: Eine helle Lampe====
 +
;Aufbau
 +
[[Datei:Stromkreis_Versuch_zwei_Lampen_Potential_als_Energiebeladungsmaß.jpg|thumb|Die linke Lampe ist an ein Netzgerät angeschlossen, die rechte über einen Schalter an die Steckdose.]]
 +
Eine 60W-Glühbirne ist an der Steckdose angeschlossen, die andere (12V/250mA) wird mit einem Netzgerät betrieben. Bei beiden Lampen wird die Stromstärke gemessen.
 +
;Beobachtung
 +
Durch beide Lampen fließt der gleiche Strom mit einer Stärke von ca. 0,25 Ampère, aber die an der Steckdose angeschlossene Lampe ist viel heller!
  
[[Datei:Schaukeltier_mit_Kind.jpg|thumb]]
+
;Folgerung
====Schaukeltier====
+
Offensichtlich ist "der Strom aus der Steckdose" anders als "der Strom aus dem Netzgerät". Der "Steckdosenstrom" transportiert mehr Energie!
Ein Kind "reitet" auf einem Feder-Schaukeltier. Erklären Sie anhand dieses Beispiels die Begriffe:
+
*Ruhelage
+
*Elongation
+
*Amplitude
+
*Rückstellkraft
+
*Periodendauer
+
*Frequenz
+
Nennen Sie noch ein weiteres Beispiel für eine mechanische Schwingung und machen Sie sich wiederum diese Begriffe klar.
+
  
====Zeigermodell====
+
====Versuch: Kichererbsentransport====
Wie kann man eine harmonische Schwingung mit einem Zeiger beschreiben?
+
;Aufbau
 +
[[Datei:Energiestromstärke Leistung Versuch Erbsenstromstärke.png|400px|left]]
 +
In einer Kiste auf einer Seite des Raumes befinden sich Erbsen. (Man kann auch Streichhölzer nehmen.) Die Erbsen sollen in eine noch leere Kiste auf der anderen Seite transportiert werden. Aber jede Person darf nur zwei Erbsen nehmen!
  
Beschreiben Sie dazu den im Unterricht durchgeführten Versuch.
+
Wir arbeiten zusammen und schauen, wie schnell wir die Erbsen transportieren können.
 +
<br style="clear: both" />
  
[[Datei:Wecker.jpg|thumb|100px]]
+
;Messwerte und Auswertung
====Uhrzeiger====
+
In diese leere Tabelle schreiben wir unsere Ergebnisse:
Eine Uhr hat einen Stunden-, einen Minuten- und einen Sekundenzeiger.
+
{|class="wikitable" style="text-align: center"
*Begründen Sie warum der Sekundenzeiger eine Winkelgeschwindigkeit von <math>\omega = \frac{2\, \pi}{60\, \rm s}</math> hat.
+
!width="16%" style="border-style: solid; border-width: 4px "|
*Welche Frequenz und welche Periodendauer hat der Sekundenzeiger?
+
Erbsen-<br>beladung
*Mit welcher Geschwindigkeit <math>v</math> bewegt sich die Spitze des Sekundenzeigers, wenn er 10cm lang ist?
+
!width="16%" style="border-style: solid; border-width: 4px "|
*Suchen Sie eine Armbanduhr oder eine Wanduhr und bestimmen Sie für alle drei Zeiger die Größen: <math>\omega</math>, <math>f</math>, <math>T</math> und <math>v</math>.
+
Zeit-<br>spanne
<br style="clear: both" />
+
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Personen-<br>anzahl
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Erbsen-<br>anzahl
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Personen-<br>stromstärke
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Erbsen-<br>stromstärke
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
<math>2\,\rm \frac{E}{P}</math>
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
.
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
.
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
.
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
.
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|}
  
====Schwingmännchen====
+
Ob wir uns bei den Erbsen verzählt haben, kann man leicht überprüfen. Die Personenanzahl multipliziert mit der Erbsenbeladung muss die Erbsenanzahl ergeben!
Ein Schwingmännchen schwingt mit einer Periodendauer von <math>\rm T = 0{,}5\, s</math> und einer Amplitude von <math>\hat y = \rm 3\, cm</math>.
+
  
Die Zeit <math>t</math> wird ab dem Durchgang von unten nach oben durch die Ruhelage gemessen.
+
Die Stromstärken berechnen sich als Personen pro Zeit und als Erbsen pro Zeit.
  
*Zeichnen Sie für folgende Zeitpunkte den Zeiger in ein Koordinatensystem: <math>t_1 = 0{,}25\, s</math>, <math>t_2 = 0{,}125\, s</math>, <math>t_3 = 0{,}4375\, s</math>
+
Man bemerkt, dass man die Erbsenstromstärke auch mit Hilfe der Personenstromstärke ausrechnen kann. Dazu muss man nur die Personenstromstärke mit der Beladung multiplizieren!
  
*Bestimmen Sie zeichnerisch jeweils die Auslenkungen <math>y(t_i)</math>.
 
  
[[Datei:Stimmgabel.jpg|thumb]]
 
[[Datei:Verrußte_Glasplatte_Stimmgabel.jpg|thumb]]
 
  
====Stimmgabel====
 
Die Zinken einer Stimmgabel schwingen mit einer Frequenz von 440 Hz<ref>Das ist der Kammerton a. (Siehe auch [http://de.wikipedia.org/wiki/Kammerton Wikipedia: Kammerton])</ref> und durch eine Messung an einer verußten Glasplatte bestimmt man die größte Amplitude zu <math>\hat y = 2 \, \rm mm</math>.
 
*Welche Periodendauer und welche Winkelgeschwindigkeit hat die Schwingung?
 
*Stellen Sie für einen Zinken der Stimmgabel die Bewegungsgleichungen auf:
 
:<math>y(t)</math>, <math>v(t)</math>, <math>a(t)</math>,
 
*Bestimmen Sie daraus die maximale Geschwindigkeit und die maximale Beschleunigug eines Zinkens der Stimmgabel.
 
<br style="clear: both" />
 
  
====Horizontales Federpendel====
 
{|
 
|valign="top"|
 
Ein Wagen schwingt horizontal an einer Feder. Die folgenden Graphen beschreiben den Verlauf seiner Bewegung im Koordinatensystem:
 
|valign="top"|
 
  
{{#widget:Iframe
 
|url=https://tube.geogebra.org/material/iframe/id/332117/width/300/height/170/border/888888/rc/false/ai/false/sdz/false/smb/false/stb/false/stbh/true/ld/false/sri/true/at/preferhtml5
 
|width=200
 
|height=114
 
|border=0
 
}}
 
  
|}
 
  
[[Datei:Aufgabe_Schwingung_y-t-Diagramm.png|500px]]
 
[[Datei:Aufgabe_Schwingung_v-t-Diagramm.png|500px]]
 
[[Datei:Aufgabe_Schwingung_a-t-Diagramm.png|500px]]
 
  
*Woran kann man erkennen, dass die Schwingung nicht gedämpft ist, also keine Energie verliert?
 
  
*Wie wurde dem Wagen zu Beginn Energie zugeführt? Wurde er ausgelenkt und losgelassen? (und wenn ja, in welche Richtung?) Wurde er angeschubst? (und wenn ja, in welche Richtung?)
 
  
Der Graph der Geschwindigkeit ist gegenüber dem der Auslenkung um eine Viertel Periode (<math>\frac{T}{4}</math> oder <math>\frac{2\, \pi}{4}</math>) verschoben.
 
  
Der Graph der Beschleunigung ist gegenüber dem der Auslenkung um eine Halbe Periode (<math>\frac{T}{2}</math> oder <math>\frac{2\, \pi}{2}</math>) verschoben und hat immer ein anderes Vorzeichen als die Auslenkung.
 
  
*Erklären Sie das anhand der Bewegung des Wagens. (Nicht mathematisch über die Ableitung.)
 
  
*Berechnen Sie die maximale Geschwindigkeit <math>\hat v</math> und die maximale Beschleunigung <math>\hat a</math> aus der Winkelgeschwindigkeit <math>\omega</math>.
+
==Vergleich des Erbsentransports mit dem elektrischen Energietransport==
:Kontrollieren Sie ihr Ergebnis an den Graphen von <math>v(t)</math> und <math>a(t)</math>.
+
Mit Hilfe des Erbsentransportes können wir erklären, warum die Lampen so unterschiedlich hell leuchten. Dazu vergleichen wir den Erbsentransport durch Personen mit dem Energietransport durch die elektrische Ladung:
 +
 
 +
*Die im Kreis laufenden Personen entsprechen der im Kreis fließenden Ladung: <math> \text{1 Person } \widehat{=} \text{ 1 Coulomb}</math>
 +
*Die transportierten Erbsen entsprechen der transportierten Energie: <math> \text{1 Erbse } \widehat{=} \text{ 1 Joule}</math>
 +
*Die Erbsenbeladung entspricht dem elektrischen Potential: <math> \text{1 Erbse pro Person } \widehat{=} \text{ 1 Joule pro Coulomb} = \text{1 Volt}</math>
 +
 
 +
Jetzt können wir die entsprechende Tabelle aufstellen:
 +
 
 +
{|class="wikitable" style="text-align: center"
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Energie-<br>beladung
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Zeit-<br>spanne
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Ladungs-<br>menge
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Energie-<br>menge
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
(Ladungs-)<br>Stromstärke
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Energie-<br>stromstärke<br>(Leistung)
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
<math>12\,\rm V = 12\,\rm \frac{J}{C}</math>
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
<math>0{,}25\,\rm A=0{,}25\,\rm \frac{C}{s}</math>
 +
|style="border-style: solid; border-width: 4px "|
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
<math>230\,\rm V = 230\,\rm \frac{J}{C}</math>
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
<math>0{,}25\,\rm A=0{,}25\,\rm \frac{C}{s}</math>
 +
|style="border-style: solid; border-width: 4px "|
 +
|}
 +
 
 +
Weil wir die Zeitdauer nicht kennen, die Lampen können ja eine Sekunde oder eine Stunde lang angeschaltet sein, können wir uns eine wählen.
 +
 
 +
Wählt man als Zeitdauer eine Sekunde, ist es einfach die geflossene Ladungsmenge zu bestimmen, denn bei einer Stromstärke von 0,25 Ampère fließen ja gerade 0,25 Coulomb pro Sekunde!
 +
In zwei Sekunden fließen daher 0,5 Coulomb usw.
 +
 
 +
Die transportierte Energiemenge ergibt sich aus der geflossenen Ladung mal dem Beladungsmaß.
  
==Fußnoten==
+
Die Energiestromstärke kann man jetzt entweder als Energie pro Zeit berechnen oder als Ladungsstromstärke mal Beladungsmaß.
<references />
+

Version vom 30. April 2025, 12:19 Uhr

Elektrischer Energietransport: Beladungsmaß und Leistung

Versuch: Eine helle Lampe

Aufbau
Die linke Lampe ist an ein Netzgerät angeschlossen, die rechte über einen Schalter an die Steckdose.

Eine 60W-Glühbirne ist an der Steckdose angeschlossen, die andere (12V/250mA) wird mit einem Netzgerät betrieben. Bei beiden Lampen wird die Stromstärke gemessen.

Beobachtung

Durch beide Lampen fließt der gleiche Strom mit einer Stärke von ca. 0,25 Ampère, aber die an der Steckdose angeschlossene Lampe ist viel heller!

Folgerung

Offensichtlich ist "der Strom aus der Steckdose" anders als "der Strom aus dem Netzgerät". Der "Steckdosenstrom" transportiert mehr Energie!

Versuch: Kichererbsentransport

Aufbau
Energiestromstärke Leistung Versuch Erbsenstromstärke.png

In einer Kiste auf einer Seite des Raumes befinden sich Erbsen. (Man kann auch Streichhölzer nehmen.) Die Erbsen sollen in eine noch leere Kiste auf der anderen Seite transportiert werden. Aber jede Person darf nur zwei Erbsen nehmen!

Wir arbeiten zusammen und schauen, wie schnell wir die Erbsen transportieren können.

Messwerte und Auswertung

In diese leere Tabelle schreiben wir unsere Ergebnisse:

Erbsen-
beladung

Zeit-
spanne

Personen-
anzahl

Erbsen-
anzahl

Personen-
stromstärke

Erbsen-
stromstärke

2EP

.

.

.

.

Ob wir uns bei den Erbsen verzählt haben, kann man leicht überprüfen. Die Personenanzahl multipliziert mit der Erbsenbeladung muss die Erbsenanzahl ergeben!

Die Stromstärken berechnen sich als Personen pro Zeit und als Erbsen pro Zeit.

Man bemerkt, dass man die Erbsenstromstärke auch mit Hilfe der Personenstromstärke ausrechnen kann. Dazu muss man nur die Personenstromstärke mit der Beladung multiplizieren!







Vergleich des Erbsentransports mit dem elektrischen Energietransport

Mit Hilfe des Erbsentransportes können wir erklären, warum die Lampen so unterschiedlich hell leuchten. Dazu vergleichen wir den Erbsentransport durch Personen mit dem Energietransport durch die elektrische Ladung:

  • Die im Kreis laufenden Personen entsprechen der im Kreis fließenden Ladung: 1 Person ˆ= 1 Coulomb
  • Die transportierten Erbsen entsprechen der transportierten Energie: 1 Erbse ˆ= 1 Joule
  • Die Erbsenbeladung entspricht dem elektrischen Potential: 1 Erbse pro Person ˆ= 1 Joule pro Coulomb=1 Volt

Jetzt können wir die entsprechende Tabelle aufstellen:

Energie-
beladung

Zeit-
spanne

Ladungs-
menge

Energie-
menge

(Ladungs-)
Stromstärke

Energie-
stromstärke
(Leistung)

12V=12JC

0,25A=0,25Cs

230V=230JC

0,25A=0,25Cs

Weil wir die Zeitdauer nicht kennen, die Lampen können ja eine Sekunde oder eine Stunde lang angeschaltet sein, können wir uns eine wählen.

Wählt man als Zeitdauer eine Sekunde, ist es einfach die geflossene Ladungsmenge zu bestimmen, denn bei einer Stromstärke von 0,25 Ampère fließen ja gerade 0,25 Coulomb pro Sekunde! In zwei Sekunden fließen daher 0,5 Coulomb usw.

Die transportierte Energiemenge ergibt sich aus der geflossenen Ladung mal dem Beladungsmaß.

Die Energiestromstärke kann man jetzt entweder als Energie pro Zeit berechnen oder als Ladungsstromstärke mal Beladungsmaß.