Gedämpfte Schwingungen: Unterschied zwischen den Versionen
(→Versuch: Schwingende Stange) |
(→Links) |
||
Zeile 71: | Zeile 71: | ||
==Links== | ==Links== | ||
+ | |||
+ | |||
+ | ===Aufgaben=== | ||
+ | 1. Was muss man bedenken, wenn man die Dämpfung einer LKW-Feder plant? | ||
+ | |||
+ | Da der LKW schwere Last transportieren muss, braucht er eine gewisse Schwingung. Unbeladen schaukelt er dann zwar stark, aber mit Last wäre er sonst eine Gefährdung. |
Version vom 11. Dezember 2006, 16:42 Uhr
Inhaltsverzeichnis
Merkmale einer gedämpften Schwingung
Beispiele
Versuch: Schwingende Stange
Aufbau
Beobachtung
Messwerte:
Versuch: Wassergedämpftes Federpendel
Aufbau
Beobachtung
Theoretischer Hintergrund
Bei Gleitreibung
Die Amplitude nimmt linear ab, die Frequenz ändert sich nicht.
[math]F_{R}=const.[/math]
DGL: [math]m\ddot y=-Dy\pm F_R[/math]
Bei einem Strömungswiderstand und "kleiner" Geschwindigkeit
Laminare Strömung ohne Wirbel
[math]F_{R}[/math][math]\sim v[/math]
Amplitude nimmt exponentiell ab
DGL: [math]m\ddot y=-Dy-r\dot y[/math] ([math]r[/math]: Reibungskoeffizient)
[math]\ddot y=-{D\over m}y-{r\over m}\dot y[/math]
Schwingfall
[math]\quad \mathrm{k^2} \, \lt \, \omega_0^2 \quad \Leftrightarrow \quad r^2 \, \lt \, 4 \mathrm{D m}[/math]
[math]\operatorname{y(}\, t)=\hat y_oe^{-kt}\sin {(\omega t + \varphi)[/math] ([math]k[/math]: Dämpfungskoeffizient)
[math]k={r\over{2m}}[/math] [math]\omega^2={\omega_o}^2-k^2[/math]
aperiodischer Grenzfall
[math]\quad \mathrm{k^2} \, = \, \omega_0^2 \quad \Leftrightarrow \quad r^2 \, = \, 4 \mathrm{D m}[/math]
Kriechfall
[math]\quad \mathrm{k^2} \, \gt \, \omega_0^2 \quad \Leftrightarrow \quad r^2 \, \gt \, 4 \mathrm{D m}[/math]
[math]\mathrm{ y(t) = \hat y_0 \quad e^{-K t} }\quad[/math] mit [math]\quad\mathrm{K = k-sqrt{k^2 - \omega_0^2}}[/math]
Bei einem Strömungswiderstand und "großer" Geschwindigkeit
Strömung mit Wirbelbildung
[math]F_{R}\sim v^2[/math]
DGL: [math]m\ddot y=-Dy-r\dot y^2[/math] [math]\Rightarrow[/math]ist nicht exakt lösbar! (nur näherungsweise mit Computer)
Links
Aufgaben
1. Was muss man bedenken, wenn man die Dämpfung einer LKW-Feder plant?
Da der LKW schwere Last transportieren muss, braucht er eine gewisse Schwingung. Unbeladen schaukelt er dann zwar stark, aber mit Last wäre er sonst eine Gefährdung.