Gedämpfte Schwingungen: Unterschied zwischen den Versionen

Aus Schulphysikwiki
Wechseln zu: Navigation, Suche
(Versuch: Schwingende Stange)
(Links)
Zeile 71: Zeile 71:
  
 
==Links==
 
==Links==
 +
 +
 +
===Aufgaben===
 +
1. Was muss man bedenken, wenn man die Dämpfung einer LKW-Feder plant?
 +
 +
  Da der LKW schwere Last transportieren muss, braucht er eine gewisse Schwingung.          Unbeladen schaukelt er dann zwar stark, aber mit Last wäre er sonst eine Gefährdung.

Version vom 11. Dezember 2006, 16:42 Uhr

Merkmale einer gedämpften Schwingung

Beispiele

Versuch: Schwingende Stange

Aufbau

Datei:Versuchsaufbau Schwingungen gedämpft Stange.jpg
Versuchsaufbau mit Markierungen der Amplitude.

Beobachtung

Messwerte:

Versuch: Wassergedämpftes Federpendel

Aufbau

Datei:Versuchsaufbau Schwingungen gedämpft.jpg
Versuchsaufbau mit variablen Gewichten und Scheiben.

Beobachtung

Theoretischer Hintergrund

Bei Gleitreibung

Die Amplitude nimmt linear ab, die Frequenz ändert sich nicht.

[math]F_{R}=const.[/math]


DGL: [math]m\ddot y=-Dy\pm F_R[/math]

Bei einem Strömungswiderstand und "kleiner" Geschwindigkeit

Laminare Strömung ohne Wirbel

[math]F_{R}[/math][math]\sim v[/math]

Amplitude nimmt exponentiell ab


DGL: [math]m\ddot y=-Dy-r\dot y[/math] ([math]r[/math]: Reibungskoeffizient)
[math]\ddot y=-{D\over m}y-{r\over m}\dot y[/math]


Schwingfall

[math]\quad \mathrm{k^2} \, \lt \, \omega_0^2 \quad \Leftrightarrow \quad r^2 \, \lt \, 4 \mathrm{D m}[/math]


[math]\operatorname{y(}\, t)=\hat y_oe^{-kt}\sin {(\omega t + \varphi)[/math] ([math]k[/math]: Dämpfungskoeffizient)
[math]k={r\over{2m}}[/math] [math]\omega^2={\omega_o}^2-k^2[/math]


aperiodischer Grenzfall

[math]\quad \mathrm{k^2} \, = \, \omega_0^2 \quad \Leftrightarrow \quad r^2 \, = \, 4 \mathrm{D m}[/math]


Kriechfall

[math]\quad \mathrm{k^2} \, \gt \, \omega_0^2 \quad \Leftrightarrow \quad r^2 \, \gt \, 4 \mathrm{D m}[/math]

[math]\mathrm{ y(t) = \hat y_0 \quad e^{-K t} }\quad[/math] mit [math]\quad\mathrm{K = k-sqrt{k^2 - \omega_0^2}}[/math]



Bei einem Strömungswiderstand und "großer" Geschwindigkeit

Strömung mit Wirbelbildung

[math]F_{R}\sim v^2[/math]


DGL: [math]m\ddot y=-Dy-r\dot y^2[/math] [math]\Rightarrow[/math]ist nicht exakt lösbar! (nur näherungsweise mit Computer)

Links

Aufgaben

1. Was muss man bedenken, wenn man die Dämpfung einer LKW-Feder plant?

  Da der LKW schwere Last transportieren muss, braucht er eine gewisse Schwingung.           Unbeladen schaukelt er dann zwar stark, aber mit Last wäre er sonst eine Gefährdung.