Untersuchung einer harmonischen Federschwingung: Unterschied zwischen den Versionen

Aus Schulphysikwiki
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: „==Animation eines schwingenden Wagens== <ggb_applet width="800" height="350" version="4.0" ggbBase64="UEsDBBQACAAIAGSudj8AAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXN…“)
 
K (Animation eines schwingenden Wagens)
Zeile 1: Zeile 1:
 
==Animation eines schwingenden Wagens==
 
==Animation eines schwingenden Wagens==
 +
Bei dieser Animation kann man mit den Schiebereglern links die Länge der Feder und die Masse des Wagens einstellen.
 +
 +
Mit der Federlänge ändert sich auch die Federkonstante der Feder.
 +
 
<ggb_applet width="800" height="350"  version="4.0" ggbBase64="UEsDBBQACAAIAGSudj8AAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACABkrnY/AAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbOVd6XLbthb+nT4Fhj86dq9FAwTX1G7HjrO4TWvP2Ok0dzo3Q1GwzJgiFZKy5bSduQ/TN+kD3Fe6BwBXUZaoLVFcTR0uALF8Z8XBIXvw/XgQoFsWJ34UHipExQpioRf1/LB/qIzSq46tfP/dVwd9FvVZN3bRVRQP3PRQ0XlNv3eoGLjnEez0OqZlXnV0i5KO3dXguSvLsrCJcbdnKgiNE/9pGP3sDlgydD124V2zgfs68txUdHydpsOn+/t3d3dq3pUaxf39fr+rjpOegmCYYXKoZCdPobnaQ3dUVNcwJvu//vRaNt/xwyR1Q48piE9h5H/31ZODOz/sRXfozu+l1zBhDRsKumZ+/xomZTq2gvZ5rSEgMmRe6t+yBJ6tXIpJp4OhIqq5IS9/Is9QUMxHQT3/1u+x+FDBKjU10zBMTEzDsQyioCj2WZhmVUnW5X7e2MGtz+5kq/xMdKgrKI2ioOvyBtEffyANaxjt8QORBw0OpimLsLyHqTxo8qDLgyHr6PJxXVbVZR1d1tGpgm79xO8G7FC5coMEEPTDqxioV1wn6X3AxHiyG+XkyR7MKfE/QmWKgU0k5HAf4z3+B0yxp/OC/fokSaXXNB4t2GneJSGO1b5PbaWZ0rxTnU7pUzMemKc5o1M58VYTNSrYQlfiP/HX6JHOmuZkj/J6tQ5N/ZNM8WA/l5WDTDxQcs3rZuyTskHCBYY6yHA43xNkgHCYFrC5gYgDB0tDIA6IGEg34JLYyORHC1ELCnREkY14PUKRkA7Dhn90SzRmIgMa43ctEEpEoCMdGRQRIVQ6AlFCQjBBSDUKNQwDGfAQ755ovAlqIt2EK2ojHcbIZdIiUJHCg3AN3WuIEkT5w8RCmolM3h7RuaybNh86NKkhEyOT8AZBrEGkpThDfRtRPhszg8sPh6O0BpE36OWnaTQsaAG1QSGVWk8qqJpSfHIQuF0WgKG44JRE6NYNuESIjq6iMEU5EW15rx+7w2vfSy5YmsJTCXrv3rqv3ZSNX0DtJO9b1PWiMDmPo/RZFIwGYYKQFwW4GHMUkMq5VowaLmilQK8WGJUCs3JuTe03ghI0Shj0H8VJXt3t9U55jVI1AJJnYXB/HDP3Zhj59Wkc7Aubc8BGXuD3fDf8BZiV98JxQYUJEvoqN0GGhvORRHHv4j4BFkbjf7M4Al2l66pDzOIHj93LEkMjqqY7xQ9KEs/lsqc7qlP9wSNZiYFVXP2Zsl92W9DHHbNyqv2Yy3Xl4jQ5joLylpj9M3eYjmLhO4AMx3xKR2E/YIJDhLIFw+zddKPxhWQNKtu6vB/CVTbzbl+gjkAzaAZY53527MqjqMOHVtTCog4WNXDOa36vKCeOJmqIY1ceRS1gXjm0bKoknybBeTd+IvQZVjKpyXUVZ31u5kehn77OL1Lfu8mmSuQDP48GXVYyEK9w4kunRHpb9W7IBrs52J/gw4MbFocsyNgeSD6KRomU4opE9JjnD+BSFmTAuZyob2BM8m6P9WOW1XcD4b1JWEVpjaEbt0VTL+JocBreXgLHNAYA04iBi2AQ3DjIYjFNMad8DgeJF/tDzreoC4bkhpWc2fMTF+xQryqZXIqhEU80mfopxxLke5ReR7Hw3kAtwZELb8AG4KyhVLBoOBqw2PcKygTCDYQxjbJZETMnKqcLirrvQWEWNlU+lI/+yQEUT+ViYoBguMHw2uX+I8m41b1ncY0Mor2zq6uEpWh8qHTgoXtQwVal9Keox2rPJAF3S9HAD4U8DtyxdEjcbgK6NgXPHEgZlp65HHmuq7jSUHhfusFPeG+2WDRc+eMK5ICi/xF4yq3NthS3FOzADXi7wLEg2Gkm/eLkld/rMeEDZOyREx404VAy/JAxKSvFg0PARmidiu7NCDeXhINJEmLV2DwFyVQK2gJS3ZhKQNIkIG85I+HiFHQyCuom/pQUFGNemIZeNBi4YQ+FwoP8BUgSxUrp0rjgHOzgPYR3AQciz+3djESjNK9yK5vNGmuwxq1sNqfyrdLggrpens8GuMIEeKYYl3Su6suEUwpnhLL58WO1qWnk0GaTo6KGE2lDPNCvLAGzUNG359yao2rnOOu8tCalfI2HMXTNSZwBc6IguMnXHWgfBdKdnC2FJ5NSqOWTbAMtmT+ku2xIyYc43TmBYQ1224zrbs3jmtnZPYhyw6BM1UZ1PqxYy9ajelAbNRTO5lVw2py0bc6d9WLSt+Cka1o207GXbXUsznWsg+1CyWorKdk5Ut1UsrhCJqoawPCX6BsEQp61QyokK92pthRjkxTraFP9ni+OTxt6422mN3a4cAKCiR/u3MEx3eXWBv0L3eaNixXQNJ2SFRQNrhelplmZjlLDrHSwavMgoWnwOC11KLZrZqZYnojx8wVbbYkv70748+05yJvkIKrqj5KBfswY6MeddBcdok7GRyc1XprGNlejUKxPlLKlTXMOnsU5i+ul2cBcZsBogMD//svh4KZ5AJrqpJVpvmxyENGJ4WimQQ3bsRy6gqFu4W++bbiXbxfzL9/OdTC3RRVs0uOczSTnL+JcARPVylTuTgAnKqbLqF/e4MqOhYhHrQ47sVQrx5muR+dOATDIAHzLkctAXBi0YDnQ+D5AXx668rA6asCrluOYVNcc6pjY5FG9T2a2wma0gOrVMKr2+N31qImBUwslW48fg2HDASaqVou0W9qjB8HdPh+uum7rGNnCrXV4s1i40TzsQehqwbEF123rp1G3Kayfe6E2lUbGCjSytp9GDbt8XFjlDtrxwOnV9hDjh0Vt8/HWuDMdTTXqXqQh6OOsyzI3QHyW+4Yu+DbjnWNYk3fh7B7OFoXx2dbA2PBv9A2j+DxH0StQZEui+HzbUbQ+iZfY3z6lu3lLc/2PiQm+zAWmXwjM9ZIC83JrBOYh7b0uialHVM6j4L4fhRMhlWO5ewdq3dWEXnIph2gyzvKLD816N0TW7r4jsr4nTuAJJk50kMN3ZHZEZpgNI0e7aPlBZ8Gc7Sw8vGc8k9HFdvEq0ZyHxTRhfX5VOoTvSJPn2o90jVGn3H/jqwbOYR3w6MwZftoc6NmHsBZl8gfDwPf8tGCfgAv5aZiyOGEistrMdrlhbMiTkc7Cy9gNE57tPJlx0hZnb2tw1ia2cGGpahmOo5m2ATZSI9R+NKCzrQE9Z+5Ozt0aVa16gODRoN7fGtQ7DV43VKxjbFGiEw1btkm/JNSbeyZsnJJ3WuZ/fP1hFKXf/hYPfj+L0z9/20O/+env93/K20rT9UjhaWWyqc9JOD957V6yX+sIZNnDCTiXV2WmrcwXNZUc/Nzeltkq0iWjqq2DL4ZV3dxDwA62I3cJWkJLa9DiRaCkjw3KDphjuhSWR9UtB6xa/HGikkWd46PVEZ3nHLdMwQIo+LtMFefYkt6xqTob8I6f+bEXsAnn+Ei6u4WPVHGIe7O9XC8KK+u03nKoCheV52JjvYEsWRTZZeJwzO+zUG6hJgiNsewW3eNc2+d3xkQSDMpIdusjqQwSVoSxP0ZHef2jvNYRLCJ0S9UMamKd2o6NHRvIe0SzHo50cdJkhCMDeuSsMNVO8Jcm/CugwHy54QuXUnJgEpaxpOiswySvS3iICmg1d5c/pey8IzOkZ94qcUJ+loX2nyJBjmoRAxPdphRTahnmhAhNY4d1SdCrPDQDfrdpCdmxyDJ5Aq82H5hpKz58JpnAaOuRmCZup5UsC0ArWAG5061Brsiv2CBwPzSAWwq0H7YPtHVtODQDf69Bd00o6FdSPZ/KSN4PDR3tz4/jcY1YwOU/HMEjZCMhvDYe/AwSzOays4paM2o+ub4Uu51tDbvBhLDkN0M1NiWk5zl8hmrbNfS0pXLItgY9U6V6Dp69AWmdmvh4JmX1vCGko9lCOpH+OFrFQW0XMG+JogNSJIN1/J3YepDOtlpkQNrre+dG8OnZfJa+UMpVul7haaI6zjI8fbE1PM2JQGpEcEwtM+P8rYaNaIg3VTitWtBjKQX7ZqvgrPO0Y9BMZxC7fn8DGuQiixXXVciFVCFvGirk/WwVMhl5fr81OkRmUFd+NI9DE1z/SSPHyaJTq1owaxtmjobZgtD0RRG72OGG1azK0HKp2hfTFtqfS4ryjQVDdWpE25hCqsNp1FSSsZRK2iY4uZmqSYWWq6T1KKFp/KmVS7U6dy5nMKftnXwmOGEOZs6dm2PIKn6kCuBS+L3ZLvxqQo0LA7mJAOUovmXPCgewbhhTaRgD/lbYf3Z4MihfD6cyrwXLrJb86yQVs3kzJ4DJuyx9zhzfmzW/f7RgctZqL5QtDip/3c4GYAO0j3bGO+cv4l3UQfwk2N2F+ztpebkr8rne1vGXZZII8vkGIV6wHouXIoZ8csMBiJlbiFPpYbV+wa82yW4UBawyO7fx4kwp3Kt8Z6O971Z+ZUM35d4dpXSmenCH5RdnjkJgmqNRMl9P8s3g+gb9OYt9aDzsuSMWP0WX6BDJAuCxS/jLLsAxy7abp+jOxn7zkhv3Yu9hHZ+nmPhMhFV/+8WWCGsi0aiyjrPaf0OCT7K+G/8iZh9GLPz4FKGrKoY7hL/dvlsi+erjAkAuuW2/KSBt8IAq3/gyzTxFrvp9L9s02gN5/LU7jJJvMyiPxZb8HuJv3Q4Wftcga2opu73Qu4Dt3fKpSasEryl4PSX5twbny1XgfPmlwLm2dyub7x7U0Hy+CprPtw3NB15BWBeYbRKqC2bl/k+BdZvkak0+068+w4oLkWSt5UnW2myH54Eka+3hLRq85h2afOedYG1CXU/bd19LmnX/IW5cbbxr+IxUkW6tgdGe4fnNIcKW5aCyrcObTKaiNvTB4wF/2TzSjTL6cqnXXxby/a1CvtPg+UmHguhfEvTTk4TrixK+bL/++y9Yzj9FJ9VlyUm5IPl5f7DAimQNmXv1z0+utiIBvVX/skG25QzSVdums83FFnd6E8fg77/CPkN+iLxB+9RrfcvwoqqjV5ZwtlbiZVQ2DrQF1nB8mkYNr5/cJBFI3fTbI2VsHVK2Y9Pip8uwK1Etu7LYdQh9CKj96nd8+XX+P4/47v9QSwcIThTHL8UOAADZYgAAUEsBAhQAFAAIAAgAZK52P0XM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACABkrnY/ThTHL8UOAADZYgAADAAAAAAAAAAAAAAAAABeAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAF0PAAAAAA==" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
 
<ggb_applet width="800" height="350"  version="4.0" ggbBase64="UEsDBBQACAAIAGSudj8AAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACABkrnY/AAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbOVd6XLbthb+nT4Fhj86dq9FAwTX1G7HjrO4TWvP2Ok0dzo3Q1GwzJgiFZKy5bSduQ/TN+kD3Fe6BwBXUZaoLVFcTR0uALF8Z8XBIXvw/XgQoFsWJ34UHipExQpioRf1/LB/qIzSq46tfP/dVwd9FvVZN3bRVRQP3PRQ0XlNv3eoGLjnEez0OqZlXnV0i5KO3dXguSvLsrCJcbdnKgiNE/9pGP3sDlgydD124V2zgfs68txUdHydpsOn+/t3d3dq3pUaxf39fr+rjpOegmCYYXKoZCdPobnaQ3dUVNcwJvu//vRaNt/xwyR1Q48piE9h5H/31ZODOz/sRXfozu+l1zBhDRsKumZ+/xomZTq2gvZ5rSEgMmRe6t+yBJ6tXIpJp4OhIqq5IS9/Is9QUMxHQT3/1u+x+FDBKjU10zBMTEzDsQyioCj2WZhmVUnW5X7e2MGtz+5kq/xMdKgrKI2ioOvyBtEffyANaxjt8QORBw0OpimLsLyHqTxo8qDLgyHr6PJxXVbVZR1d1tGpgm79xO8G7FC5coMEEPTDqxioV1wn6X3AxHiyG+XkyR7MKfE/QmWKgU0k5HAf4z3+B0yxp/OC/fokSaXXNB4t2GneJSGO1b5PbaWZ0rxTnU7pUzMemKc5o1M58VYTNSrYQlfiP/HX6JHOmuZkj/J6tQ5N/ZNM8WA/l5WDTDxQcs3rZuyTskHCBYY6yHA43xNkgHCYFrC5gYgDB0tDIA6IGEg34JLYyORHC1ELCnREkY14PUKRkA7Dhn90SzRmIgMa43ctEEpEoCMdGRQRIVQ6AlFCQjBBSDUKNQwDGfAQ755ovAlqIt2EK2ojHcbIZdIiUJHCg3AN3WuIEkT5w8RCmolM3h7RuaybNh86NKkhEyOT8AZBrEGkpThDfRtRPhszg8sPh6O0BpE36OWnaTQsaAG1QSGVWk8qqJpSfHIQuF0WgKG44JRE6NYNuESIjq6iMEU5EW15rx+7w2vfSy5YmsJTCXrv3rqv3ZSNX0DtJO9b1PWiMDmPo/RZFIwGYYKQFwW4GHMUkMq5VowaLmilQK8WGJUCs3JuTe03ghI0Shj0H8VJXt3t9U55jVI1AJJnYXB/HDP3Zhj59Wkc7Aubc8BGXuD3fDf8BZiV98JxQYUJEvoqN0GGhvORRHHv4j4BFkbjf7M4Al2l66pDzOIHj93LEkMjqqY7xQ9KEs/lsqc7qlP9wSNZiYFVXP2Zsl92W9DHHbNyqv2Yy3Xl4jQ5joLylpj9M3eYjmLhO4AMx3xKR2E/YIJDhLIFw+zddKPxhWQNKtu6vB/CVTbzbl+gjkAzaAZY53527MqjqMOHVtTCog4WNXDOa36vKCeOJmqIY1ceRS1gXjm0bKoknybBeTd+IvQZVjKpyXUVZ31u5kehn77OL1Lfu8mmSuQDP48GXVYyEK9w4kunRHpb9W7IBrs52J/gw4MbFocsyNgeSD6KRomU4opE9JjnD+BSFmTAuZyob2BM8m6P9WOW1XcD4b1JWEVpjaEbt0VTL+JocBreXgLHNAYA04iBi2AQ3DjIYjFNMad8DgeJF/tDzreoC4bkhpWc2fMTF+xQryqZXIqhEU80mfopxxLke5ReR7Hw3kAtwZELb8AG4KyhVLBoOBqw2PcKygTCDYQxjbJZETMnKqcLirrvQWEWNlU+lI/+yQEUT+ViYoBguMHw2uX+I8m41b1ncY0Mor2zq6uEpWh8qHTgoXtQwVal9Keox2rPJAF3S9HAD4U8DtyxdEjcbgK6NgXPHEgZlp65HHmuq7jSUHhfusFPeG+2WDRc+eMK5ICi/xF4yq3NthS3FOzADXi7wLEg2Gkm/eLkld/rMeEDZOyREx404VAy/JAxKSvFg0PARmidiu7NCDeXhINJEmLV2DwFyVQK2gJS3ZhKQNIkIG85I+HiFHQyCuom/pQUFGNemIZeNBi4YQ+FwoP8BUgSxUrp0rjgHOzgPYR3AQciz+3djESjNK9yK5vNGmuwxq1sNqfyrdLggrpens8GuMIEeKYYl3Su6suEUwpnhLL58WO1qWnk0GaTo6KGE2lDPNCvLAGzUNG359yao2rnOOu8tCalfI2HMXTNSZwBc6IguMnXHWgfBdKdnC2FJ5NSqOWTbAMtmT+ku2xIyYc43TmBYQ1224zrbs3jmtnZPYhyw6BM1UZ1PqxYy9ajelAbNRTO5lVw2py0bc6d9WLSt+Cka1o207GXbXUsznWsg+1CyWorKdk5Ut1UsrhCJqoawPCX6BsEQp61QyokK92pthRjkxTraFP9ni+OTxt6422mN3a4cAKCiR/u3MEx3eXWBv0L3eaNixXQNJ2SFRQNrhelplmZjlLDrHSwavMgoWnwOC11KLZrZqZYnojx8wVbbYkv70748+05yJvkIKrqj5KBfswY6MeddBcdok7GRyc1XprGNlejUKxPlLKlTXMOnsU5i+ul2cBcZsBogMD//svh4KZ5AJrqpJVpvmxyENGJ4WimQQ3bsRy6gqFu4W++bbiXbxfzL9/OdTC3RRVs0uOczSTnL+JcARPVylTuTgAnKqbLqF/e4MqOhYhHrQ47sVQrx5muR+dOATDIAHzLkctAXBi0YDnQ+D5AXx668rA6asCrluOYVNcc6pjY5FG9T2a2wma0gOrVMKr2+N31qImBUwslW48fg2HDASaqVou0W9qjB8HdPh+uum7rGNnCrXV4s1i40TzsQehqwbEF123rp1G3Kayfe6E2lUbGCjSytp9GDbt8XFjlDtrxwOnV9hDjh0Vt8/HWuDMdTTXqXqQh6OOsyzI3QHyW+4Yu+DbjnWNYk3fh7B7OFoXx2dbA2PBv9A2j+DxH0StQZEui+HzbUbQ+iZfY3z6lu3lLc/2PiQm+zAWmXwjM9ZIC83JrBOYh7b0uialHVM6j4L4fhRMhlWO5ewdq3dWEXnIph2gyzvKLD816N0TW7r4jsr4nTuAJJk50kMN3ZHZEZpgNI0e7aPlBZ8Gc7Sw8vGc8k9HFdvEq0ZyHxTRhfX5VOoTvSJPn2o90jVGn3H/jqwbOYR3w6MwZftoc6NmHsBZl8gfDwPf8tGCfgAv5aZiyOGEistrMdrlhbMiTkc7Cy9gNE57tPJlx0hZnb2tw1ia2cGGpahmOo5m2ATZSI9R+NKCzrQE9Z+5Ozt0aVa16gODRoN7fGtQ7DV43VKxjbFGiEw1btkm/JNSbeyZsnJJ3WuZ/fP1hFKXf/hYPfj+L0z9/20O/+env93/K20rT9UjhaWWyqc9JOD957V6yX+sIZNnDCTiXV2WmrcwXNZUc/Nzeltkq0iWjqq2DL4ZV3dxDwA62I3cJWkJLa9DiRaCkjw3KDphjuhSWR9UtB6xa/HGikkWd46PVEZ3nHLdMwQIo+LtMFefYkt6xqTob8I6f+bEXsAnn+Ei6u4WPVHGIe7O9XC8KK+u03nKoCheV52JjvYEsWRTZZeJwzO+zUG6hJgiNsewW3eNc2+d3xkQSDMpIdusjqQwSVoSxP0ZHef2jvNYRLCJ0S9UMamKd2o6NHRvIe0SzHo50cdJkhCMDeuSsMNVO8Jcm/CugwHy54QuXUnJgEpaxpOiswySvS3iICmg1d5c/pey8IzOkZ94qcUJ+loX2nyJBjmoRAxPdphRTahnmhAhNY4d1SdCrPDQDfrdpCdmxyDJ5Aq82H5hpKz58JpnAaOuRmCZup5UsC0ArWAG5061Brsiv2CBwPzSAWwq0H7YPtHVtODQDf69Bd00o6FdSPZ/KSN4PDR3tz4/jcY1YwOU/HMEjZCMhvDYe/AwSzOays4paM2o+ub4Uu51tDbvBhLDkN0M1NiWk5zl8hmrbNfS0pXLItgY9U6V6Dp69AWmdmvh4JmX1vCGko9lCOpH+OFrFQW0XMG+JogNSJIN1/J3YepDOtlpkQNrre+dG8OnZfJa+UMpVul7haaI6zjI8fbE1PM2JQGpEcEwtM+P8rYaNaIg3VTitWtBjKQX7ZqvgrPO0Y9BMZxC7fn8DGuQiixXXVciFVCFvGirk/WwVMhl5fr81OkRmUFd+NI9DE1z/SSPHyaJTq1owaxtmjobZgtD0RRG72OGG1azK0HKp2hfTFtqfS4ryjQVDdWpE25hCqsNp1FSSsZRK2iY4uZmqSYWWq6T1KKFp/KmVS7U6dy5nMKftnXwmOGEOZs6dm2PIKn6kCuBS+L3ZLvxqQo0LA7mJAOUovmXPCgewbhhTaRgD/lbYf3Z4MihfD6cyrwXLrJb86yQVs3kzJ4DJuyx9zhzfmzW/f7RgctZqL5QtDip/3c4GYAO0j3bGO+cv4l3UQfwk2N2F+ztpebkr8rne1vGXZZII8vkGIV6wHouXIoZ8csMBiJlbiFPpYbV+wa82yW4UBawyO7fx4kwp3Kt8Z6O971Z+ZUM35d4dpXSmenCH5RdnjkJgmqNRMl9P8s3g+gb9OYt9aDzsuSMWP0WX6BDJAuCxS/jLLsAxy7abp+jOxn7zkhv3Yu9hHZ+nmPhMhFV/+8WWCGsi0aiyjrPaf0OCT7K+G/8iZh9GLPz4FKGrKoY7hL/dvlsi+erjAkAuuW2/KSBt8IAq3/gyzTxFrvp9L9s02gN5/LU7jJJvMyiPxZb8HuJv3Q4Wftcga2opu73Qu4Dt3fKpSasEryl4PSX5twbny1XgfPmlwLm2dyub7x7U0Hy+CprPtw3NB15BWBeYbRKqC2bl/k+BdZvkak0+068+w4oLkWSt5UnW2myH54Eka+3hLRq85h2afOedYG1CXU/bd19LmnX/IW5cbbxr+IxUkW6tgdGe4fnNIcKW5aCyrcObTKaiNvTB4wF/2TzSjTL6cqnXXxby/a1CvtPg+UmHguhfEvTTk4TrixK+bL/++y9Yzj9FJ9VlyUm5IPl5f7DAimQNmXv1z0+utiIBvVX/skG25QzSVdums83FFnd6E8fg77/CPkN+iLxB+9RrfcvwoqqjV5ZwtlbiZVQ2DrQF1nB8mkYNr5/cJBFI3fTbI2VsHVK2Y9Pip8uwK1Etu7LYdQh9CKj96nd8+XX+P4/47v9QSwcIThTHL8UOAADZYgAAUEsBAhQAFAAIAAgAZK52P0XM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACABkrnY/ThTHL8UOAADZYgAADAAAAAAAAAAAAAAAAABeAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAF0PAAAAAA==" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />

Version vom 22. November 2011, 20:56 Uhr

Animation eines schwingenden Wagens

Bei dieser Animation kann man mit den Schiebereglern links die Länge der Feder und die Masse des Wagens einstellen.

Mit der Federlänge ändert sich auch die Federkonstante der Feder.

Bitte installiere Java, um diese Seite nutzen zu können.