Animation: Schiefe Ebene an einem Berg: Unterschied zwischen den Versionen
Aus Schulphysikwiki
(Die Seite wurde neu angelegt: „<ggb_applet width="1100" height="500" version="4.0" ggbBase64="UEsDBBQACAgIALWsSEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVK…“) |
|||
Zeile 1: | Zeile 1: | ||
+ | Die Steilheit des Anstiegs kann man durch das Verschieben der Startpunkte verändern. | ||
+ | |||
+ | Man kann auch Daniel und Elisabeth auf dem Weg verschieben. | ||
+ | |||
+ | |||
+ | |||
<ggb_applet width="1100" height="500" version="4.0" ggbBase64="UEsDBBQACAgIALWsSEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIALWsSEMAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vzbcts2Gr5unwKjq92ZiMYZYMdpJ8nGtROn6Wy63Z296VASJTOWSIWkfOj0pbad7gvsfZ9pfwCkRImUZCq2rLTVJKZAgjj83//9BxDU8Vc3kzG6CtMsSuKnHeLhDgrjfjKI4tHTziwfdnXnqy8/Px6FySjspQEaJukkyJ92uKkZDZ521JCEnBPSVQOfd7kY9LqB4n5X9HpEKS2UL4IOQjdZ9EWcfBNMwmwa9MN3/YtwEpwn/SC3HV/k+fSLo6Pr62uv7MpL0tHRaNTzbrJBB8Ew4+xpp/jyBTS3dNM1s9UpxuToX2/OXfPdKM7yIO6HHWSmMIu+/Pyz4+soHiTX6Doa5BcwYS5VB12E0egCJqWJ7qAjU2sKEpmG/Ty6CjO4t1K0k84n046tFsTm+mfuGxrP59NBg+gqGoTp0w72sNRESkaFZgIzJTooSaMwzou6pOjzqGzt+CoKr12z5pvtkXdQniTjXmBaRD/9hCimGD0xB+IOFA5SukvYncPMHag7cHcQrg53t3NXlbs63NXhrIOuoizqjcOnnWEwzkCEUTxMAb55Octvx6EdT3FiMXvyBOaURT9CZeivg5zMYeBP8BOO7X8358oESaXHPJ217LDsjnDh360/+lEzZPMOV+dH181PbujQTfhOExSV/gR+Yv/Z/7Ue2aYprvboyh/XoeR7meLxUcmP44ISKLswdQu1ycNJZkjCfCR8o+sECSCEVKDaAhEfDooioAAiAnEBRaKRNEeFmIILHDGkkalHGLKMEBr+cGUbk0hAY+asAiIiAh1xJBgilkgcAX2QJSMQkzKoIQQScJPpnlDTBJOISygxjTiM0fBQEajI4EYoQ/cUMYKYuZkoRCWSpj3CDb+lNkOHJimSGEliGgQqA40dhaG+RszMRhbiiuLpLF8SUX8yKL/myXSOBdQGI7Qwdc4oLVnCz47HQS8cg3d4Z5BE6CoYGzbYjoZJnKMSROrOjdJgehH1s3dhnsNdGXofXAXnQR7enEDtrOzb1u0ncfZtmuQvkvFsEmcI9ZMxno85GZPKdzofNRRY5QKvXhCVC7LyXTX2m8AVNMtC6D9Js7J6MBicmRoLswCSfBuPb5+nYXA5TaLlaRwfWUdzHM7642gQBfH3oKymFyMXtPA7xk6VfkcKUY4kSQfvbjNQYXTz7zBNgACUeOAxbl2J+co43qwfGI4RQj2gxeIDHLpdd60AKbyaQxHchItZjVJD4UrhLHuejBen7ERfBNN8ltrYACxgakb/LB6NQ6sM1qaC4+1f9pKbd04LmGvru9splLAbQW9kBYzACFCYOBoVx5472jpmaPNa2NbBtgYu1SoazK8Tn9oa9thzR1sL9NQNrZgqKadJcNlNlFnThTsFQUqzZLTcuPFZHOXnZSGP+pfFVIm74ZvZpBfOdWW5TXJfbR4frSjT8WWYxuG40F0Ac5bMMkfFiloPwn40gaK7UIgkMHD9Awbgzg7CURqWAx/buMsJzF7FVa2snbZNnaTJ5Cy++g50YWUAx0flKI+zfhpNjc6hHtj7y3ChVYMoC8BdDKr3GbLB1PvGLYB4ciOa12kwzEFwA/QyDtNRFAaz4XUAxV4YTdBp0r8Yw5kwBrrO8osElOLbIE9BtOgbGPskiGP0l6x/MRtPL26z6PI6uoy8QfhXGACYIoDBEHYcTiAoQ7nVVavuc8y+jqbDcGxDPoMQSnrvwSTOvaartFABuLxGeVEAIwhsUFioaHAbpktita29SQbLwh5GN+HAnVn0k8GYrZiejcfJdXl9ybLB7DN0A/B7wI1bcwS786OL9F2kayZq2OpuJtWzK5CDHjoZWZAmEyP/2Dr3b620Fs4mALN98wyIUMhjlpdnn7mGitu3iP1ZXeLLXGoWOaHOqthjYVXuV/ALuXaZpyletrNGzqafTXJmDyzn523k/Pzw5aw8Th9QsO/CkTm/ItpnMB1SyHJJusFm6WZFa6X4gi2Wo8LYAzQdVuK3JqLwKLey7y7GMPewOUR5l5C/ZjYMyAuHb7+cRoNBGM9tS/ghdrdkzu1Fk+k46kf5XMrjW3AVZ3EOTtCNse7bLsNwaoKKt/F3aRBnZlVieYbroX6bgoMYJXEwPofBryBeGHoLe1CD/cNm2I0w5ph+2I1T94R5xUAVsFWoQ7mnqH4YANfLfQ7oisg/rJP2SRsTdrKTczYZ68gdeu6wq8DbuGKlPJ9T5exZd27QqPQYU7ISzD+0fTtZZ9+GvXYGDuo/pra3EH63tGbCo0t+m1gQPmXD1hQc1Fn1sg2rXu7Eqo+JC94Oh1mYO8NVRKy8EXpWJiGQ49hMAZLmqWnfZFHTMHQJ2ByuKfRn89ZmrWAeE9UPVx8dbED7kC2bkdlz7/Ig3WIht/ijlzUspy380fRA/JFNQIzdE55Y/lhJ+55iZPHBe3dTzZbypYOggGMVh347a9n/iESSCNYSiwqjitRkE5/amNISymYku22gZAdgWVcI+89w1N7e9mu68TewUE5l7mp0izse0fKauw1F5SZK35PlJR5TWhAiKRHa933hlBQsLqOYSJ8xwTCm9AGSvo2ZQIHCmth01MLyjg7E8jZkAl0iPO5zrrCkUioi+N7tbROLXPi5JPAXbRj04jHJ47hDSZuopYE5ZBtzuOcrVv08QsTS7CxfbHSWLVOLhsxiP87S7AUAgXL/vt0lfFFLyFHnMAn3OAUazj/iD+Aw60x/OTbPBML8olWiMr/p8ZjvCNhtTlfu1Wkyj2KtfSIw8SVRvi59puYCU58RrSUFk04ewGk2uMqF8C3vFxHPEq5b8FxymQ0wPorLxJ4mDBPKtACaYm4fsBqMPaEVxwyuCAEAuGVR4WkB8ueKSgh3ld67L90Y0KygVI9phi0AGh4IQA0xDZMelgAJ5ppigSWR+4ahMaSpifu0jX07PYAnNA9qu2A0VFOI+M1BKYW1UvuxXqeODxc1gKIWfIgOhA/tDBZEIhy+E4j7pQk9sNg7V9Y9FYgcKqMaKmdtaHO2Gyz391igYqkUaLLymaa+wEJxoQtksMelUJoyLDhTgIB1JcQTknK7bKIoJVLuK+89c4KvL2RsWcNYokPD6sXjuAeqpcdBusznPvUxLiJwwn1PMOz7IFpBfU6144Mg1KNMUsCIwh/O902HBkA2Z1NxC1Tig0HlPjOh/UdShceopy6XLcC4PBAwmiC4LTEynNDgUhQH7yEVBX+ia3vrDimqrWMyaIHJ4FPBhHnCIIKLf+DtDwqU6tpp3ZGELRAJDwSRpqdVS4hwD6yUAcWHvEMQxvYNyPcgnCTdzI7TGhZfk81gXLlW5/sgyU7rK+U2390Bab/cVj7n7xKwX1JjH4IozDj1Cb3Dk36xGaLKjtgCpH6Q5mEWBXExULN2avNAFN5MVxa1VtbNvt4B2CrDzuqo0nao0r2iWl1jtRCp3yXk1WWwNnjfJfQY1CB/38Kovj8Qo1qGgWuiwK7vMc0x9wlWghEh1Qb09u/kikQprEExaQHF5ECgaEqIbpvzJ/vYUHtS+dInhGOK4fzeg8J16wYDh8r7Giqv26wbvD6cdQOmPAzhhmbMBwyElm6pX3hAGQjLMWccSyyZS5ykRzBhav7h97hssE7kk3VEeNNG5G8OR+RdQjX1GCHABio518VOTY0J5KWg8ERJTIRbM4Cy8LCijPhYwEms9iDy2In8sibyV21E/upwRC6lR5UvpKCcmiVJJ3G7DqAJBNSQe1Ih9cMr+V3C6Fc1sZ9M28XRpv5OIRfmFctvSzvvq+ySjRsrW8VdPqShYJ7MOjITUCh3Nvtc+1wpMFCKKazkgUXeJ9OPV4bXdWXIWipDtpsy2N0Nc2WwpR2UoXhqTe9tV+CqNhBSaoOWSksiIMqQGByaPjRtyHYzxlOnCPW12fM2xvj8cIxxlzMMaAkfIkKuCYHY25ljhql9tur7hPkC4r+H94Bbs9/zBmPcLv019R/dGN/bLiPsKQ4RPFMaM4aZefxd0I9pH6JFJkyGBUGNf0g58U6WuKoGbxrMcEs1yHZTg3sxw4UW0HvSgnVKYOJXpSRkEVRhonnxPt+hKMEWA9y0r6KIvJa3XLexu3/7He2skFgTSiAp10orwotNYQA5BNZSEgK0p0Tv7fXZ6ssrJzWU0s0ore4DTff49n19F+jml5BavYfvlzsyOMfap9jXApvt1y+7xMXHXekx42MXn93J+Rj7QE//99+LLa+q2R8Nqb2qtuZ50W//2awp9nco5noAtc39MJJZqbseBDHYh/gEUwhIWSnP1u9jlwve9W3F5M6MJxuw3LJQFqT9Ck9L02E07u/hcBzeWKGuIrNFNXfc2l1nc9aOzdmn8r7o/JnC6iI1+/TfhG9iYdVmG7BpE9i//dyKkT/XGQlJggJPRX2zRw2yjB0ZWcZeNvj+YzLydN2aVPDDlmWI2q9U/LBtHeJhf6eiXZazspggi12k9ZWoH+0DJuGD7Ze+YoooeqcHSeQgOdusBGfrcuG8nQrkn4wCNGUyt2vSX7fTVZjnW1RyIrmY/+Dap6gCTWZ7eT+ANdt1Zfjtl1Zm+5c/A6n7MNtNcL0q9+NYpFYWJauI/doKsV+3Odo/3WwTXkfVX5wz5fIniL/8P1BLBwjZiKrNew0AAB9ZAABQSwECFAAUAAgICAC1rEhD1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIALWsSEPZiKrNew0AAB9ZAAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAEg4AAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" /> | <ggb_applet width="1100" height="500" version="4.0" ggbBase64="UEsDBBQACAgIALWsSEMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIALWsSEMAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vzbcts2Gr5unwKjq92ZiMYZYMdpJ8nGtROn6Wy63Z296VASJTOWSIWkfOj0pbad7gvsfZ9pfwCkRImUZCq2rLTVJKZAgjj83//9BxDU8Vc3kzG6CtMsSuKnHeLhDgrjfjKI4tHTziwfdnXnqy8/Px6FySjspQEaJukkyJ92uKkZDZ521JCEnBPSVQOfd7kY9LqB4n5X9HpEKS2UL4IOQjdZ9EWcfBNMwmwa9MN3/YtwEpwn/SC3HV/k+fSLo6Pr62uv7MpL0tHRaNTzbrJBB8Ew4+xpp/jyBTS3dNM1s9UpxuToX2/OXfPdKM7yIO6HHWSmMIu+/Pyz4+soHiTX6Doa5BcwYS5VB12E0egCJqWJ7qAjU2sKEpmG/Ty6CjO4t1K0k84n046tFsTm+mfuGxrP59NBg+gqGoTp0w72sNRESkaFZgIzJTooSaMwzou6pOjzqGzt+CoKr12z5pvtkXdQniTjXmBaRD/9hCimGD0xB+IOFA5SukvYncPMHag7cHcQrg53t3NXlbs63NXhrIOuoizqjcOnnWEwzkCEUTxMAb55Octvx6EdT3FiMXvyBOaURT9CZeivg5zMYeBP8BOO7X8358oESaXHPJ217LDsjnDh360/+lEzZPMOV+dH181PbujQTfhOExSV/gR+Yv/Z/7Ue2aYprvboyh/XoeR7meLxUcmP44ISKLswdQu1ycNJZkjCfCR8o+sECSCEVKDaAhEfDooioAAiAnEBRaKRNEeFmIILHDGkkalHGLKMEBr+cGUbk0hAY+asAiIiAh1xJBgilkgcAX2QJSMQkzKoIQQScJPpnlDTBJOISygxjTiM0fBQEajI4EYoQ/cUMYKYuZkoRCWSpj3CDb+lNkOHJimSGEliGgQqA40dhaG+RszMRhbiiuLpLF8SUX8yKL/myXSOBdQGI7Qwdc4oLVnCz47HQS8cg3d4Z5BE6CoYGzbYjoZJnKMSROrOjdJgehH1s3dhnsNdGXofXAXnQR7enEDtrOzb1u0ncfZtmuQvkvFsEmcI9ZMxno85GZPKdzofNRRY5QKvXhCVC7LyXTX2m8AVNMtC6D9Js7J6MBicmRoLswCSfBuPb5+nYXA5TaLlaRwfWUdzHM7642gQBfH3oKymFyMXtPA7xk6VfkcKUY4kSQfvbjNQYXTz7zBNgACUeOAxbl2J+co43qwfGI4RQj2gxeIDHLpdd60AKbyaQxHchItZjVJD4UrhLHuejBen7ERfBNN8ltrYACxgakb/LB6NQ6sM1qaC4+1f9pKbd04LmGvru9splLAbQW9kBYzACFCYOBoVx5472jpmaPNa2NbBtgYu1SoazK8Tn9oa9thzR1sL9NQNrZgqKadJcNlNlFnThTsFQUqzZLTcuPFZHOXnZSGP+pfFVIm74ZvZpBfOdWW5TXJfbR4frSjT8WWYxuG40F0Ac5bMMkfFiloPwn40gaK7UIgkMHD9Awbgzg7CURqWAx/buMsJzF7FVa2snbZNnaTJ5Cy++g50YWUAx0flKI+zfhpNjc6hHtj7y3ChVYMoC8BdDKr3GbLB1PvGLYB4ciOa12kwzEFwA/QyDtNRFAaz4XUAxV4YTdBp0r8Yw5kwBrrO8osElOLbIE9BtOgbGPskiGP0l6x/MRtPL26z6PI6uoy8QfhXGACYIoDBEHYcTiAoQ7nVVavuc8y+jqbDcGxDPoMQSnrvwSTOvaartFABuLxGeVEAIwhsUFioaHAbpktita29SQbLwh5GN+HAnVn0k8GYrZiejcfJdXl9ybLB7DN0A/B7wI1bcwS786OL9F2kayZq2OpuJtWzK5CDHjoZWZAmEyP/2Dr3b620Fs4mALN98wyIUMhjlpdnn7mGitu3iP1ZXeLLXGoWOaHOqthjYVXuV/ALuXaZpyletrNGzqafTXJmDyzn523k/Pzw5aw8Th9QsO/CkTm/ItpnMB1SyHJJusFm6WZFa6X4gi2Wo8LYAzQdVuK3JqLwKLey7y7GMPewOUR5l5C/ZjYMyAuHb7+cRoNBGM9tS/ghdrdkzu1Fk+k46kf5XMrjW3AVZ3EOTtCNse7bLsNwaoKKt/F3aRBnZlVieYbroX6bgoMYJXEwPofBryBeGHoLe1CD/cNm2I0w5ph+2I1T94R5xUAVsFWoQ7mnqH4YANfLfQ7oisg/rJP2SRsTdrKTczYZ68gdeu6wq8DbuGKlPJ9T5exZd27QqPQYU7ISzD+0fTtZZ9+GvXYGDuo/pra3EH63tGbCo0t+m1gQPmXD1hQc1Fn1sg2rXu7Eqo+JC94Oh1mYO8NVRKy8EXpWJiGQ49hMAZLmqWnfZFHTMHQJ2ByuKfRn89ZmrWAeE9UPVx8dbED7kC2bkdlz7/Ig3WIht/ijlzUspy380fRA/JFNQIzdE55Y/lhJ+55iZPHBe3dTzZbypYOggGMVh347a9n/iESSCNYSiwqjitRkE5/amNISymYku22gZAdgWVcI+89w1N7e9mu68TewUE5l7mp0izse0fKauw1F5SZK35PlJR5TWhAiKRHa933hlBQsLqOYSJ8xwTCm9AGSvo2ZQIHCmth01MLyjg7E8jZkAl0iPO5zrrCkUioi+N7tbROLXPi5JPAXbRj04jHJ47hDSZuopYE5ZBtzuOcrVv08QsTS7CxfbHSWLVOLhsxiP87S7AUAgXL/vt0lfFFLyFHnMAn3OAUazj/iD+Aw60x/OTbPBML8olWiMr/p8ZjvCNhtTlfu1Wkyj2KtfSIw8SVRvi59puYCU58RrSUFk04ewGk2uMqF8C3vFxHPEq5b8FxymQ0wPorLxJ4mDBPKtACaYm4fsBqMPaEVxwyuCAEAuGVR4WkB8ueKSgh3ld67L90Y0KygVI9phi0AGh4IQA0xDZMelgAJ5ppigSWR+4ahMaSpifu0jX07PYAnNA9qu2A0VFOI+M1BKYW1UvuxXqeODxc1gKIWfIgOhA/tDBZEIhy+E4j7pQk9sNg7V9Y9FYgcKqMaKmdtaHO2Gyz391igYqkUaLLymaa+wEJxoQtksMelUJoyLDhTgIB1JcQTknK7bKIoJVLuK+89c4KvL2RsWcNYokPD6sXjuAeqpcdBusznPvUxLiJwwn1PMOz7IFpBfU6144Mg1KNMUsCIwh/O902HBkA2Z1NxC1Tig0HlPjOh/UdShceopy6XLcC4PBAwmiC4LTEynNDgUhQH7yEVBX+ia3vrDimqrWMyaIHJ4FPBhHnCIIKLf+DtDwqU6tpp3ZGELRAJDwSRpqdVS4hwD6yUAcWHvEMQxvYNyPcgnCTdzI7TGhZfk81gXLlW5/sgyU7rK+U2390Bab/cVj7n7xKwX1JjH4IozDj1Cb3Dk36xGaLKjtgCpH6Q5mEWBXExULN2avNAFN5MVxa1VtbNvt4B2CrDzuqo0nao0r2iWl1jtRCp3yXk1WWwNnjfJfQY1CB/38Kovj8Qo1qGgWuiwK7vMc0x9wlWghEh1Qb09u/kikQprEExaQHF5ECgaEqIbpvzJ/vYUHtS+dInhGOK4fzeg8J16wYDh8r7Giqv26wbvD6cdQOmPAzhhmbMBwyElm6pX3hAGQjLMWccSyyZS5ykRzBhav7h97hssE7kk3VEeNNG5G8OR+RdQjX1GCHABio518VOTY0J5KWg8ERJTIRbM4Cy8LCijPhYwEms9iDy2In8sibyV21E/upwRC6lR5UvpKCcmiVJJ3G7DqAJBNSQe1Ih9cMr+V3C6Fc1sZ9M28XRpv5OIRfmFctvSzvvq+ySjRsrW8VdPqShYJ7MOjITUCh3Nvtc+1wpMFCKKazkgUXeJ9OPV4bXdWXIWipDtpsy2N0Nc2WwpR2UoXhqTe9tV+CqNhBSaoOWSksiIMqQGByaPjRtyHYzxlOnCPW12fM2xvj8cIxxlzMMaAkfIkKuCYHY25ljhql9tur7hPkC4r+H94Bbs9/zBmPcLv019R/dGN/bLiPsKQ4RPFMaM4aZefxd0I9pH6JFJkyGBUGNf0g58U6WuKoGbxrMcEs1yHZTg3sxw4UW0HvSgnVKYOJXpSRkEVRhonnxPt+hKMEWA9y0r6KIvJa3XLexu3/7He2skFgTSiAp10orwotNYQA5BNZSEgK0p0Tv7fXZ6ssrJzWU0s0ore4DTff49n19F+jml5BavYfvlzsyOMfap9jXApvt1y+7xMXHXekx42MXn93J+Rj7QE//99+LLa+q2R8Nqb2qtuZ50W//2awp9nco5noAtc39MJJZqbseBDHYh/gEUwhIWSnP1u9jlwve9W3F5M6MJxuw3LJQFqT9Ck9L02E07u/hcBzeWKGuIrNFNXfc2l1nc9aOzdmn8r7o/JnC6iI1+/TfhG9iYdVmG7BpE9i//dyKkT/XGQlJggJPRX2zRw2yjB0ZWcZeNvj+YzLydN2aVPDDlmWI2q9U/LBtHeJhf6eiXZazspggi12k9ZWoH+0DJuGD7Ze+YoooeqcHSeQgOdusBGfrcuG8nQrkn4wCNGUyt2vSX7fTVZjnW1RyIrmY/+Dap6gCTWZ7eT+ANdt1Zfjtl1Zm+5c/A6n7MNtNcL0q9+NYpFYWJauI/doKsV+3Odo/3WwTXkfVX5wz5fIniL/8P1BLBwjZiKrNew0AAB9ZAABQSwECFAAUAAgICAC1rEhD1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIALWsSEPZiKrNew0AAB9ZAAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAEg4AAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" /> |
Version vom 8. Oktober 2013, 20:53 Uhr
Die Steilheit des Anstiegs kann man durch das Verschieben der Startpunkte verändern.
Man kann auch Daniel und Elisabeth auf dem Weg verschieben.