Animation: Flaschenzug ohne Umlenkrolle: Unterschied zwischen den Versionen
Aus Schulphysikwiki
(Die Seite wurde neu angelegt: „<ggb_applet width="400" height="650" version="4.2" ggbBase64="UEsDBBQACAAIABW4t0QAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKi…“) |
|||
Zeile 1: | Zeile 1: | ||
+ | Am Seilende kann man ziehen, um die Kiste nach oben zu heben. | ||
+ | |||
+ | *Mit welcher Kraft muss man am Seilende ziehen? (Eine Einheit entspricht 10N.) | ||
+ | *Wie weit muss man das Seilende nach oben ziehen, um die Kiste einen Meter anzuheben? | ||
+ | |||
+ | |||
<ggb_applet width="400" height="650" version="4.2" ggbBase64="UEsDBBQACAAIABW4t0QAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACAAVuLdEAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1c6XLbRhL+7TzFFH6kpISkMDhJR0pKduKjYkUuy0plbatSIDAkJwIBBodEqvIC+xT7Z3/uU+y+yT7J9hwACYAXKIkWta6yhWuu7q/n6+7BEIc/jIc+uiJRTMPgSMEtVUEkcEOPBv0jJU16zbbyw/dfHfZJ2CfdyEG9MBo6yZFitDRlWg+uWpbKKlPvSNHcrkG6erfZdjSvaehEa3bahDRN7Nm411N7PR0rCI1j+jQIf3GGJB45LjlzB2TovAldJ+FtDpJk9PTg4Pr6upX13gqj/kG/322NY09BMPIgPlLkyVNorlDpWufFNVXFB7+dvBHNN2kQJ07gEgUxqVL6/VdPDq9p4IXX6Jp6yQBkaXcUNCC0PwAxsWrBUA9YqREIOyJuQq9IDHVnLrnQyXCk8GJOwJ4/EWfIz+VRkEevqEeiI0VtmdjW25qBdbVtd3TDVFAYURIksmzW50HW2uEVJdeiWXbGezQUlISh33VYi8jsoL/+QpqqqajBDlgcNDhYlnikinuqLg6aOBjiYIoyhqhuiKKGKGOIMoYOkNOYdn1ypPQcPwYt0qAXAYL5dZxMfMKHJG9MFYAbIFZMb6Aw9KcgoXYYe0NtGCr/L8SekRHP9JhE6dIOxfOZ/rLeDBuv15t2K/n0XDpTL/anLeivPYMgZvD8hTDDhR90xBDBHBl2MOSlJS5tfsCqOGD5sM3+cEuwbodVJgs2Z5Ay1Qb/x/9XsVrWpQDnjnvUlwFW7nGheRQ61DSzgY12A8PdRsfUKn1axralNNSOfedy6obdMLHVsEFem7Vf6tRWC+ySUYs4Ynm8e/XP0cThQcZ9h3JAKB6wspIPEjKM2RD1DudAhJEJM8mygbJMhDtwsNmM0hA2kWHCJW4jix1tpLNJZCAdtRErh3XEmc5swx+DTzALmdAWu2mLmYZ0A5k6wpwfDQRaQJxjQSeaDiVME5lQifWOWbe6hQwLLvQ2MmCAjF1tNs91qAfX0LmGdIx0VhfbSLOQpSGbMTQ2GHFbbTZ2aFRDloosVhUoGuhZUDPUaCOdSQOTbxTGNFfugPijHBWuRxqM0qSgO3foZadJWCrthe7ls1zX8glx4mS2GDioqRsUDqvgJZ8c+k6X+BBMnDFDQOjK8RlR8h56YZCgzAgsca8fOaMBdeMzkiRQK0Z/OFfOGych4xdQOs765l1z731IUtenHnWCX8FKWBOsQZQ7cxtPnXm7rYpe3DCMvLNJDKaDxh9IFILhmS21bVpGp922dVWzIQaYiCeGYYK7bhuqrWHN0hjLxa7DTF63W6Zl2sDshqna7TYww2TBI1N0TK5ywZwxiTPl9yPqzZ6/jp+FvpcrehTSIHnujJI04mEZTIyISXQc9H3CFctdFwQ47mU3HJ8JjeqirfeTEWFVeP/d/vPQDyMUMScFQUdfHrviyMuwgeWlVF5G5SXUDCLq5c9xR+Ml+LErjrwUYC6GJgXFmZRq1guNkbgumhg3GBYtpQFN3mQXCXUvpaRYVPglHXbB1qTaim1ipWDmmzXJC/xIRbgoQuNcfgjl4uQ37rRZ0Muu/iajZ3b+fkASh4d5mm522rZtwl8NTEsYbslkDy9JFBBfGGYA1pGGaSxmSm7tTw7TmLx1ksFx4L0jfZjkbx3GswmMVxSdqsEjLh1CRXFf4uEwWzkH+cVdj/QjkqnN58G1QIs/LUyTym3e1IsoHL4Ort6DIZaGeniQyXMYuxEdMXNHXSD+SzI1adCSA27Dm60HwscghcsoDJSfMGQU5KTJIARLA+EjAAT9AmMaOkGA9mJ3kPqjwSSml9f0krY8sg8NA1cAEjY6cSiQMzYUxhE+GUJwjRI+F7rgRYgT5HaRDnngDlKkpKJ2Zhco7P4BlFY20anG4fmCGYMcGCE3Bak835mQqKBO3tpprxeTBI0Z3QDBTI6UTmfm8UnolaABNmBq4veGgOr50CfBZRT6vgRBylyRPkiHBBQ5lV4tS9/Us8HemfB4qfBT6XBmYWDAXD6g6JFoAIFbIWJuJ5LS0Aga5Iw4Y3zryp3EZbnNuWIXKGTGMO5SbDlHY5+lh2hIhQcfOmPGMNBeNw79NIEMGeZsMM2QxdCkp9MFFbEqWoedgQ3pDEnUo2OSuxeYS/QGWKZIGVO2TsD7XkLOGfN8Jtc0O3lFPY8EC0HaBCI3HMJc9lDAQ8bXPWUapzgq6AV9g6IwDby9JEYHSNtH//37PxAghxycCeRoRVjSJKvdJ5HjyS5lRyu5QNbZAh/UmhLrm/UNWE95+OoW5jOuM5/vwVTAQL7uJ98hLGzjhAYfm3CvCdYCRpSqEE+rF8JajIql3MBUW24nVTVDjZKaca7ntVW4WMAz0mf3S1LugRys630hpbikwX7V9j8slyeWzed2/0HZoreruLMYRsf9/rHvh9fEq0w7HorEnN1USW78eDPb2TwSM5eTGPkzEFViEQnS4cinLk1yhfrMJF8HLM4SI6xGZpeEjFiUfRq8j5wgZiukxZBsMcpvWWRfwlhAV0BzBZg8P8iBmoPkOj4MayIf4EeZD9SPXmwOjbYU7DXYAM9jg1krKBtBHp1zXbAMqJBqirulSLZAquNRBPbCBpXFRZDtjmF06d54Hx0hDP6HU8kYfQt0IrLfIgy9NOAWMg2tPuucmjsdtGXTYRkb/ZkStmpeoiPaQE0syYgKdmUErHM+biJcseSz0+Wm7EP2lKsHCt9CgRjfPy3V1/HGFromIEzrDZTuTfY+7O8vQKaKynkdVM6/oLJujkHipBwlPMrkquiB6O15r473qRgIT3jKqyJOOqY+daJJ+UHVqeCyU5lZCJFxAsyUkU/GW5jRLAfis7plLp/XPR9GmSVKlSn+rs4UfzdnihdiiPkA5kuKqrHGHJ+fMTzAOV4PJ5XhtMApCoj2hG/cXwBUHQ/5bo6H/ALUUqBkYvXxJ1Ht47vTBqIXDVS8hiCPJVd4/2Iejm9I0E8GUPSiAl9cC794QwC3lXZtklJtFbzzEnjnM+A1V6B3zgpWQ9S4FlXGG3Ll/wGC8xYwMqDOACiJw9n5hYRpwcMpnPOwIsGqNb7yWkdWae002Q0Dj4qICYqfytL//td0gbFEr4xWWazL9oFsb2GklBI3jR1eGKms70ldczvJyOHj3OCI+1aggQZLhApBkVz/Ox6NAP+PG7cypZuFhlr1C69+xzVYhZX+kmRtQiygOYCsRCj8pgQKzi+q8AzqUchgszW27a+WZimN3jJFSrOcFDoPmhRWuJTT6WQ8rbiU4sM8vJsXv23iUU7vwqM8LH/SLDuUXfYna8aTjNApiwpnSZ4nBHMjyTlLaXGd2HGz5G2L1vCAo8eM46tvS2In6DlBv+YUlpU24vXPNEH1nX4TVn3l8upEvnPZK3lzmJELXTlfRlGK65AHKxYooaMV0dVSB54tm9xqkXKKo9Zir9wmMmK/i7dZa3Hfcxq5Pqmsg6gts+6aR1RnySO6zYrHvMDWfDyB7Vo4na+H0/kcnOosbES3Wdd41Di9Df1JPwxKML06YUFlE9ipqcvFX3Erv6Nld2aWiPW8Yn6zjNpLck3dQSKadEQ7XVHVhYNxpHjLYR3J8WbAZQ0uVOKKjV/1txYwtwhWYeI1jOI2q82LX1CV3b2z4SaJxZLc9bp5NYfTMu+wPBBfgd59ePKlqu7ukKqbmtQ1m45c2fpO6drdIV1nZt3MXrc2zZ3StbdDuq6YddN6YLpevS9ufDym1Xz7eJXvm437jzdbVK27NW4pamttv1hj/5t5t/vflmjt2f1v59iqxsx719jzR6ExvE2V/fi4VNbE5hZm5k+PQmmdO9fZps7kVR1n8urROJPOHTuTddLlY5HPPhP57HORz/4o8tmf4GBKNIr4OD4EHGnQl8nw71imw7/LxQ+Xn7CUmJ9AI+yVsQVy10uRpx1tutJwl3Gh9tmy5HmvoR9skNssB0UzmtsAwe0nyjul7XyzrLpe+vbQtO3ulLbBNRZtu4ktrWXvknl7O6Xw6uoE3i37rrEb4bMrW0Z+syGIobV2ybh7O6Tt3LQ7a7033r6q19kKwN4VT9+xLNoe+nJ52FfZBPByV/Z1VTZ7astjnYf/8v89GSdYvv//+s80TL77BA0cBzfOwP/UQB6J4G8SOX220ypAcHFGKIz4KRKlmRm8cd6T3z4m8cU+XInb4u+8LQEJdKgUe79n8G83gWnMxSvqVH5FKSYR7eXf3IKE7USaiPi6kqpkwGa/AZv7RQnELYt9m3HCLGYpAZZ/6lb5hsr01/CP56sDv4IIYTT3xS9jIG2/zEka20fMziA1Qd+gYZWiXqygqCvRZaawFzUYasEmw6q+s58D3b8Nz3FC5lpOaAV/zfmBnhMlJKZOIEeWwDVfCELFLTdWcc2jJvYf5B40QPnFS/4L8SrA9fD9zPDe9b5jvG10uf/4sJy7Kh99Wfd7L/cXC0y/oIDbwjINbRkU2bfeCh/3EU9mvwz1c/Sff/aSNb2vVvG+P0efPC8EO4Y2PiEnuCEU3K90qWt4VO2LR2Vko+oziM7icDD7yTN2nX3o+Pv/AVBLBwgPnmdaTQ0AAJhZAABQSwECFAAUAAgACAAVuLdERczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIABW4t0QPnmdaTQ0AAJhZAAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAA5Q0AAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" /> | <ggb_applet width="400" height="650" version="4.2" ggbBase64="UEsDBBQACAAIABW4t0QAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACAAVuLdEAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1c6XLbRhL+7TzFFH6kpISkMDhJR0pKduKjYkUuy0plbatSIDAkJwIBBodEqvIC+xT7Z3/uU+y+yT7J9hwACYAXKIkWta6yhWuu7q/n6+7BEIc/jIc+uiJRTMPgSMEtVUEkcEOPBv0jJU16zbbyw/dfHfZJ2CfdyEG9MBo6yZFitDRlWg+uWpbKKlPvSNHcrkG6erfZdjSvaehEa3bahDRN7Nm411N7PR0rCI1j+jQIf3GGJB45LjlzB2TovAldJ+FtDpJk9PTg4Pr6upX13gqj/kG/322NY09BMPIgPlLkyVNorlDpWufFNVXFB7+dvBHNN2kQJ07gEgUxqVL6/VdPDq9p4IXX6Jp6yQBkaXcUNCC0PwAxsWrBUA9YqREIOyJuQq9IDHVnLrnQyXCk8GJOwJ4/EWfIz+VRkEevqEeiI0VtmdjW25qBdbVtd3TDVFAYURIksmzW50HW2uEVJdeiWXbGezQUlISh33VYi8jsoL/+QpqqqajBDlgcNDhYlnikinuqLg6aOBjiYIoyhqhuiKKGKGOIMoYOkNOYdn1ypPQcPwYt0qAXAYL5dZxMfMKHJG9MFYAbIFZMb6Aw9KcgoXYYe0NtGCr/L8SekRHP9JhE6dIOxfOZ/rLeDBuv15t2K/n0XDpTL/anLeivPYMgZvD8hTDDhR90xBDBHBl2MOSlJS5tfsCqOGD5sM3+cEuwbodVJgs2Z5Ay1Qb/x/9XsVrWpQDnjnvUlwFW7nGheRQ61DSzgY12A8PdRsfUKn1axralNNSOfedy6obdMLHVsEFem7Vf6tRWC+ySUYs4Ynm8e/XP0cThQcZ9h3JAKB6wspIPEjKM2RD1DudAhJEJM8mygbJMhDtwsNmM0hA2kWHCJW4jix1tpLNJZCAdtRErh3XEmc5swx+DTzALmdAWu2mLmYZ0A5k6wpwfDQRaQJxjQSeaDiVME5lQifWOWbe6hQwLLvQ2MmCAjF1tNs91qAfX0LmGdIx0VhfbSLOQpSGbMTQ2GHFbbTZ2aFRDloosVhUoGuhZUDPUaCOdSQOTbxTGNFfugPijHBWuRxqM0qSgO3foZadJWCrthe7ls1zX8glx4mS2GDioqRsUDqvgJZ8c+k6X+BBMnDFDQOjK8RlR8h56YZCgzAgsca8fOaMBdeMzkiRQK0Z/OFfOGych4xdQOs765l1z731IUtenHnWCX8FKWBOsQZQ7cxtPnXm7rYpe3DCMvLNJDKaDxh9IFILhmS21bVpGp922dVWzIQaYiCeGYYK7bhuqrWHN0hjLxa7DTF63W6Zl2sDshqna7TYww2TBI1N0TK5ywZwxiTPl9yPqzZ6/jp+FvpcrehTSIHnujJI04mEZTIyISXQc9H3CFctdFwQ47mU3HJ8JjeqirfeTEWFVeP/d/vPQDyMUMScFQUdfHrviyMuwgeWlVF5G5SXUDCLq5c9xR+Ml+LErjrwUYC6GJgXFmZRq1guNkbgumhg3GBYtpQFN3mQXCXUvpaRYVPglHXbB1qTaim1ipWDmmzXJC/xIRbgoQuNcfgjl4uQ37rRZ0Muu/iajZ3b+fkASh4d5mm522rZtwl8NTEsYbslkDy9JFBBfGGYA1pGGaSxmSm7tTw7TmLx1ksFx4L0jfZjkbx3GswmMVxSdqsEjLh1CRXFf4uEwWzkH+cVdj/QjkqnN58G1QIs/LUyTym3e1IsoHL4Ort6DIZaGeniQyXMYuxEdMXNHXSD+SzI1adCSA27Dm60HwscghcsoDJSfMGQU5KTJIARLA+EjAAT9AmMaOkGA9mJ3kPqjwSSml9f0krY8sg8NA1cAEjY6cSiQMzYUxhE+GUJwjRI+F7rgRYgT5HaRDnngDlKkpKJ2Zhco7P4BlFY20anG4fmCGYMcGCE3Bak835mQqKBO3tpprxeTBI0Z3QDBTI6UTmfm8UnolaABNmBq4veGgOr50CfBZRT6vgRBylyRPkiHBBQ5lV4tS9/Us8HemfB4qfBT6XBmYWDAXD6g6JFoAIFbIWJuJ5LS0Aga5Iw4Y3zryp3EZbnNuWIXKGTGMO5SbDlHY5+lh2hIhQcfOmPGMNBeNw79NIEMGeZsMM2QxdCkp9MFFbEqWoedgQ3pDEnUo2OSuxeYS/QGWKZIGVO2TsD7XkLOGfN8Jtc0O3lFPY8EC0HaBCI3HMJc9lDAQ8bXPWUapzgq6AV9g6IwDby9JEYHSNtH//37PxAghxycCeRoRVjSJKvdJ5HjyS5lRyu5QNbZAh/UmhLrm/UNWE95+OoW5jOuM5/vwVTAQL7uJ98hLGzjhAYfm3CvCdYCRpSqEE+rF8JajIql3MBUW24nVTVDjZKaca7ntVW4WMAz0mf3S1LugRys630hpbikwX7V9j8slyeWzed2/0HZoreruLMYRsf9/rHvh9fEq0w7HorEnN1USW78eDPb2TwSM5eTGPkzEFViEQnS4cinLk1yhfrMJF8HLM4SI6xGZpeEjFiUfRq8j5wgZiukxZBsMcpvWWRfwlhAV0BzBZg8P8iBmoPkOj4MayIf4EeZD9SPXmwOjbYU7DXYAM9jg1krKBtBHp1zXbAMqJBqirulSLZAquNRBPbCBpXFRZDtjmF06d54Hx0hDP6HU8kYfQt0IrLfIgy9NOAWMg2tPuucmjsdtGXTYRkb/ZkStmpeoiPaQE0syYgKdmUErHM+biJcseSz0+Wm7EP2lKsHCt9CgRjfPy3V1/HGFromIEzrDZTuTfY+7O8vQKaKynkdVM6/oLJujkHipBwlPMrkquiB6O15r473qRgIT3jKqyJOOqY+daJJ+UHVqeCyU5lZCJFxAsyUkU/GW5jRLAfis7plLp/XPR9GmSVKlSn+rs4UfzdnihdiiPkA5kuKqrHGHJ+fMTzAOV4PJ5XhtMApCoj2hG/cXwBUHQ/5bo6H/ALUUqBkYvXxJ1Ht47vTBqIXDVS8hiCPJVd4/2Iejm9I0E8GUPSiAl9cC794QwC3lXZtklJtFbzzEnjnM+A1V6B3zgpWQ9S4FlXGG3Ll/wGC8xYwMqDOACiJw9n5hYRpwcMpnPOwIsGqNb7yWkdWae002Q0Dj4qICYqfytL//td0gbFEr4xWWazL9oFsb2GklBI3jR1eGKms70ldczvJyOHj3OCI+1aggQZLhApBkVz/Ox6NAP+PG7cypZuFhlr1C69+xzVYhZX+kmRtQiygOYCsRCj8pgQKzi+q8AzqUchgszW27a+WZimN3jJFSrOcFDoPmhRWuJTT6WQ8rbiU4sM8vJsXv23iUU7vwqM8LH/SLDuUXfYna8aTjNApiwpnSZ4nBHMjyTlLaXGd2HGz5G2L1vCAo8eM46tvS2In6DlBv+YUlpU24vXPNEH1nX4TVn3l8upEvnPZK3lzmJELXTlfRlGK65AHKxYooaMV0dVSB54tm9xqkXKKo9Zir9wmMmK/i7dZa3Hfcxq5Pqmsg6gts+6aR1RnySO6zYrHvMDWfDyB7Vo4na+H0/kcnOosbES3Wdd41Di9Df1JPwxKML06YUFlE9ipqcvFX3Erv6Nld2aWiPW8Yn6zjNpLck3dQSKadEQ7XVHVhYNxpHjLYR3J8WbAZQ0uVOKKjV/1txYwtwhWYeI1jOI2q82LX1CV3b2z4SaJxZLc9bp5NYfTMu+wPBBfgd59ePKlqu7ukKqbmtQ1m45c2fpO6drdIV1nZt3MXrc2zZ3StbdDuq6YddN6YLpevS9ufDym1Xz7eJXvm437jzdbVK27NW4pamttv1hj/5t5t/vflmjt2f1v59iqxsx719jzR6ExvE2V/fi4VNbE5hZm5k+PQmmdO9fZps7kVR1n8urROJPOHTuTddLlY5HPPhP57HORz/4o8tmf4GBKNIr4OD4EHGnQl8nw71imw7/LxQ+Xn7CUmJ9AI+yVsQVy10uRpx1tutJwl3Gh9tmy5HmvoR9skNssB0UzmtsAwe0nyjul7XyzrLpe+vbQtO3ulLbBNRZtu4ktrWXvknl7O6Xw6uoE3i37rrEb4bMrW0Z+syGIobV2ybh7O6Tt3LQ7a7033r6q19kKwN4VT9+xLNoe+nJ52FfZBPByV/Z1VTZ7astjnYf/8v89GSdYvv//+s80TL77BA0cBzfOwP/UQB6J4G8SOX220ypAcHFGKIz4KRKlmRm8cd6T3z4m8cU+XInb4u+8LQEJdKgUe79n8G83gWnMxSvqVH5FKSYR7eXf3IKE7USaiPi6kqpkwGa/AZv7RQnELYt9m3HCLGYpAZZ/6lb5hsr01/CP56sDv4IIYTT3xS9jIG2/zEka20fMziA1Qd+gYZWiXqygqCvRZaawFzUYasEmw6q+s58D3b8Nz3FC5lpOaAV/zfmBnhMlJKZOIEeWwDVfCELFLTdWcc2jJvYf5B40QPnFS/4L8SrA9fD9zPDe9b5jvG10uf/4sJy7Kh99Wfd7L/cXC0y/oIDbwjINbRkU2bfeCh/3EU9mvwz1c/Sff/aSNb2vVvG+P0efPC8EO4Y2PiEnuCEU3K90qWt4VO2LR2Vko+oziM7icDD7yTN2nX3o+Pv/AVBLBwgPnmdaTQ0AAJhZAABQSwECFAAUAAgACAAVuLdERczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIABW4t0QPnmdaTQ0AAJhZAAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAA5Q0AAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" /> |
Version vom 23. Mai 2014, 22:10 Uhr
Am Seilende kann man ziehen, um die Kiste nach oben zu heben.
- Mit welcher Kraft muss man am Seilende ziehen? (Eine Einheit entspricht 10N.)
- Wie weit muss man das Seilende nach oben ziehen, um die Kiste einen Meter anzuheben?