Zeigermodell und Wellengleichung einer ebenen harmonischen Welle: Unterschied zwischen den Versionen
K |
(→Wellengleichung) |
||
Zeile 68: | Zeile 68: | ||
Die zweite verwendet die Ausbreitungsgeschwindigkeit der Welle. Sie folgt aus <math>\frac{2\pi}{\lambda} = \frac{2\pi\, f}{\lambda\, f} = \frac{\omega}{c}</math>. | Die zweite verwendet die Ausbreitungsgeschwindigkeit der Welle. Sie folgt aus <math>\frac{2\pi}{\lambda} = \frac{2\pi\, f}{\lambda\, f} = \frac{\omega}{c}</math>. | ||
− | + | :{|class="wikitable" | |
− | + | |style="border-style: solid; border-width: 4px "| | |
− | + | <math> | |
− | + | \begin{array}{rcl} | |
+ | y(x,t) &=& \hat y \, \sin\,(\omega t - \frac{2 \pi}{\lambda} x) \\ | ||
+ | &=& \hat y \, \sin\left( 2\pi ( \frac{t}{T} - \frac{x}{\lambda}) \right) \\ | ||
+ | &=&\hat y \, \sin\left( \frac{2\pi}{\lambda } \left( c \, t - x\right) \right) | ||
+ | \end{array}</math> | ||
+ | |||
+ | Wellengleichung einer linearen harmonischen Welle. | ||
+ | |} | ||
===Beispiel=== | ===Beispiel=== |
Version vom 9. November 2014, 22:27 Uhr
(Kursstufe > Mechanische Wellen)

Im Falle einer räumlich unbegrenzten, linearen harmonischen Welle kann man die Welle relativ einfach beschreiben. In einer solchen Welle sind alle Schwingungen harmonisch und die Welle breitet sich nur längs einer Raumrichtung aus. Kugelwellen, Kreiswellen oder Zylinderwellen sind also keine solchen Wellen, ebene Wellen schon. Ausserdem werden räumlich begrenzte Wellenpakete ausgeschlossen.
Bei einer Welle regt eine Schwingung ihren Nachbarn in
Ausbreitungsrichtung zu erzwungenen Schwingungen an. Alle schwingen mit
der gleichen Frequenz und der gleichen Amplitude. Die Schwinger hinken aber in
Ausbreitungsrichtung der ursprünglichen Schwingung hinterher, wodurch
sich eine Phasenverschiebung ergibt. Im Abstand einer halben
Wellenlänge beträgt sie gerade π
Inhaltsverzeichnis
[Verbergen]Zeigermodell
Eine Schwingung wird durch einen rotierenden Zeiger dargestellt. Eine Welle wird durch eine Kette von Schwingungen, also auch durch eine Kette von Zeigern dargestellt. Die Zeiger haben eine Phasenverschiebung zum Nachbarzeiger, weil das "Signal" verzögert weitergegeben wird.
Sehr anschaulich gibt diese Idee eine Spirale wieder. Sobald sie sich dreht, sieht man eine Welle nach oben oder unten laufen, je nach Drehrichtung. Bei der Holzspirale entsprechen den einzelnen Holzstäben die Zeiger, die durch ihre Drehung von der Seite betrachtet die Schwingung an einem Ort beschreiben. Jedes Holzstäbchen wird zum Nachbarstäbchen ein bischen gedreht. (Genau genommen sieht man zwei Wellen, weil die Stäbchen zu lang sind.) Zum Selberbasteln kann man sich diesen Schnittbogen ausschneiden und aufhängen. Ähnlich anschaulich sind die auf einem Modell sich drehenden Perlen, die auch schrittweise um einen festen Winkel phasenverschoben sind. AnimationenDiese Animation veranschaulicht die Zeigerdarstellung einer Welle. An jeder Stelle der Welle befindet sich ein drehender Zeiger. Leider drehen sich die Zeiger dabei nicht quer zur Ausbreitungsrichtung, sondern parallel dazu. Das entspricht einer Longitudinalwelle und nicht einer Transversalwelle. Anders ist die Darstellung zweidimensional nicht möglich, aber es kann auch verwirren. Die Animation kann mit dem kleinen Dreieck links unten angehalten werden. Der linke Zeiger gehört zum Anfangspunkt A der Welle. Der rechte Zeiger ist am blauen Punkt verschiebbar und gehört zur Stelle B. Angegeben ist der Phasenunterschied der Zeiger an den verschiedenen Orten. Hier kann man sich die Geogebradatei herunterladen. In dieser Animation von Jörg Bogendörfer sind viele Zeiger einer Welle dargestellt. Auch hier drehen sich die Zeiger nicht quer zur Ausbreitungsrichtung sondern parallel dazu. |
![]() Die Windspirale (Video) |
|
![]() Die Holzspirale (Video) |
![]() Eine Welle mit einer Kette von Zeigern. (Aus dem Applet von Jörg Bogendörfer) |
Wellengleichung
Die Wellengleichung soll "sagen" wie groß die Auslenkung der Welle an einem bestimmten Ort und zu einem bestimmten Zeitpunkt ist. Dazu stellt man für alle beteiligten Schwinger eine Ortsfunktion auf. Da die Ortsfunktionen von der Position x abhängen, schreibt man yx(t)
Jede der einzelnen harmonischen Schwingungen hat die gleiche Frequenz und die gleiche Amplitude. Sie unterscheiden sich nur durch eine ortsabhängige Phasenverschiebung voneinander:
- y(x,t)=ˆysin(ωt−φ(x))
Eine Schwingung, die eine halbe Wellenlänge vom "Start" entfernt ist, hinkt gerade um π
- φ(x)=2πλx.(Der Bruch 2πλwird auch als Wellenzahl bezeichnet.) Und es folgt:
- y(x,t)=ˆysin(ωt−2πλx)
Auch zwei weitere Umformungen dieser Gleichungen findet man häufig.
Die erste verwendet die Periodendauer statt der Frequenz und ist schön symmetrisch. Sie folgt aus ω=2πf=2πT
Die zweite verwendet die Ausbreitungsgeschwindigkeit der Welle. Sie folgt aus 2πλ=2πfλf=ωc
y(x,t)=ˆysin(ωt−2πλx)=ˆysin(2π(tT−xλ))=ˆysin(2πλ(ct−x))
Wellengleichung einer linearen harmonischen Welle.
Beispiel
Es soll eine passende Gleichung für die drehende Windspirale aufgestellt werden.
Wir nehmen an, dass sie sich in der Sekunde zweimal dreht, der Radius beträgt drei Zentimeter und die Wellenlänge 13 Zentimeter. Dementsprechend gilt also:
- f=2Hz (ω=2π⋅2Hz);ˆy=3cm;λ=13cm
- y(x,t)=3cmsin(4πHz t−2π13cm x)≈3cmsin(12Hz t−0,481cm x)
Im Argument des Sinus beschreibt 121s
In der zweiten Version sieht das mit einer Periode von T=0,5s
- y(x,t)=3cmsin[2π(t0,5s−x13cm)]
Und in der dritten Version mit der Phasengeschwindigkeit c=λf=13cm⋅0,5Hz=2,6cms
- y(x,t)=3cmsin[2π13cm(2,6cmst−x)]≈3cmsin[0,481cm(2,6cmst−x)]
Folgerungen
Nun kann man für einen beliebigen Ort das Ortsgesetz der Schwingung bestimmen. Am Anfang (x=0) und nach 13 oder 26,... Zentimetern der Spirale gilt:
- y(t)=3cmsin(12Hz t)
Eine halbe Wellenlänge oder 6,5 cm weiter unten (und entsprechend 13 + 6,5 cm ...) hat man eine Phasenverschiebung von π
- y(t)=3cmsin(12Hz t−0,481cm 6,5cm)=3cmsin(12Hz t−3,12)
Man kann außerdem für eine feste Zeit für alle beteiligten Schwingungen (hier eigentlich drehende Zeiger) die momentane Elongation (Auslenkung) angeben. Das entspricht dem momentanen Aussehen der Welle.
Zu Beginn (t=0) sieht die Welle so aus:
- y(x)=3cmsin(−0,481cm x)
Nach einer viertel Sekunde ist sie genau eine halbe Wellenlänge weitergewandert:
- y(x)=3cmsin(12Hz 0,25s−0,481cm x)=3cmsin(3−0,481cm x)
Es ist sinnvoll sich
die Ergebnisse mal mit einem Taschenrechner oder einem Programm zeichnen zu lassen.
Links
- dynamische Arbeitsblätter zur Erarbeitung der Grundbegriffe der Wellenlehre (C. Wolfseher)
- Applet: Phasenzeiger einer Welle (Jörg Bogendörfer Didaktik der Physik Uni Erlangen)