|
|
Zeile 1: |
Zeile 1: |
− | Mit Hilfe dieser Animation läßt sich die Zeigerdarstellung nachvollziehen. Wer sich erstmal die Grundlagen von Sinus und Cosinus am Einheitskreis anschauen möchte, kann dies bei der Animation "[[Animation: Sinus und Cosinus im Einheitskreis|Sinus und Cosinus im Einheitskreis]]" tun. | + | Mit Hilfe dieser Animation läßt sich die Zeigerdarstellung nachvollziehen. Wer sich erstmal die Grundlagen von Sinus und Cosinus am Einheitskreis anschauen möchte, kann dies bei der Animation "[[Animation: Sinus und Cosinus im Einheitskreis|Sinus und Cosinus im Einheitskreis]]" tun. Eine Beschreibung des Bogenmaßes gibt die Animation [[Animation: Bogenmaß, Gradmaß und Umdrehungsmaß im Vergleich|Bogenmaß, Gradmaß und Umdrehungsmaß im Vergleich]]. |
| | | |
| Die Zeit kann man mit dem Schieberegler verändern oder die Animationsgeschwindigkeit größer als Null einstellen. | | Die Zeit kann man mit dem Schieberegler verändern oder die Animationsgeschwindigkeit größer als Null einstellen. |
Zeile 6: |
Zeile 6: |
| oberen Schieberegler einstellen. | | oberen Schieberegler einstellen. |
| | | |
− | <ggb_applet width="750" height="450" version="4.2" ggbBase64="UEsDBBQACAAIAEZ8dUMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACABGfHVDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1c247jthm+Tp6CcIFgNxl7RFHUIZlJ4OxmkwCzB2Sn2zRNEcgWbTMjS44ke+xpCuSy+xS9adE36AvkAfYd+iT9SUqyDrbG8ngODYpshpZE8fD9p+8naZ98tpz6aMGimIfBaQf3tA5iwTD0eDA+7cyTUdfufPbp+ydjFo7ZIHLRKIymbnLaMXp6Z/0eXPVMTbzMPbiyiaePiNm1HTzoGoxZXcekTtch5sijBvyzSAehZcw/DsIX7pTFM3fIXg8nbOqehUM3kW1OkmT28fHx5eVlL+u9F0bj4/F40FvGXgfByIP4tJN++BiaK710SWR1XdPw8bfPz1TzXR7EiRsMWQeJWc35p++/d3LJAy+8RJfcSyanHYdaHTRhfDyBaVoGTPNYVJrBXGdsmPAFi+HVwqWcczKddWQ1NxDP31OfkJ9Pp4M8vuAei047Wo9YDsEaMQxbt6htQh9hxFmQpHVx2udx1trJgrNL1az4pFDuoCQM/YErWkTUQT//jHRN19CRKLAqdChMUz3S1D2NqEJXhaEKquoY6nVDVTVUHUPVMUBoCx7zgc9OOyPXjwFEHowiEGB+HScrn8khJdEcrtfz149gljG/grrQXQcp0GHoR9qRocn/1awLU8SFDlV7u/eHs94cw9mtN73N9NIb6/5I1h8xSbk/fUt/dkGAWEjnZ4SFWGRBkBAIloIRhZFemurSkgXWVIHTh7b4IxXBvNFccuwwLUiKakfyn/y/Lqu775K0kthWBWnRo2k09Kg6OGyHhuZYB+/SMe0jbGDZqWXQWqeWVnItmV9RJU7LJuwPhsTJceb4TtIBoXgi6qbeIGHTWAyRONIBIowo2JFpgb+iCDtQWMKedIQpMihcYhuZorQQESZkIIJsJOphgqSbozb8MaR5mYhCW+KmpewMEQNRgrB0jgYCFJB0sICJTqAGpYjCS6J3LLolJjJMuCA2MmCAwrVawsoJvAfX0LmOCEZEvIstpJvI1JEl3DM2hNc2bTF2aFRHpoZM8Sr4Z/DNyi/DGzYiYjZgerMw5jm4E+bPcqlIHHkwmycl7IZTL/uYhJXaXji8+DzHOn3C3DgpVoPotI6BKlqVQuR7J747YD4QiddCERBauL5wk7KHURgkKFMCXd0bR+5swofxa5Yk8FaMfnQX7pmbsOUzqB1nfcuuZeQ+YfOhzz3uBm9AS0QTokGUB3Lh+LNATi1H9TIMw8h7vYpBddDyOxaFMADH7plUs3XimBpcOGASq+wR7tmWgSFGU9OwbA2cdjx0hdJT0tNNx9JMamPbdjTobLX5ETZU12yRT81dsjiDfxwJo0uBFRdfx5+H/vrWLORB8sSdJfNIsjKwjUhMqh+MfSaxlbEL+M3wYhAuXytQiWrrfDVj4hU5gMH4SeiHEQKT1ClMcpyWA1XKOmJkeS3h78aqGMgiFRT38irY0WUdWQ5UKWuB5NXo0snibKZYy3risfQ3MKGiZkq1Oe18x3gCLgXFHTQPeHKm7r77BfSVDy/SeaevvphPB6B8aQvl1vHG1r/ww2As3VGp+R0bFxMBPhcn3wrOTC3Nckyim5Zj2I5pduSjPwqip1N1cT5hiStuUJ1Qx7YsCn91x7aVOlcU+eSCRQHzlboGoDHzcB4r+1mPYR6zV24y6QfeN2wM83jlCuebwEirNT025FPQJXU/FY8rtOf3MHN112PjiGXQ+ZJtK+HJp1rRdmq3ZVPPonD6dbA4B9VUD3NrBbNM3AjUFQYhAC8P7+Q4m+xJPIz4TNgHGkCsuGBrEwAIXYg0XtEHADIxNDKUTSY8ERIDnRmzyHMjMG/fn0NLDLQwQkD+IcqM4UYHufNkEoLiAngRyBq9gDlN3QD0wANfIyyhhyEPMiWdvwyji3jCWHLOlglyB+ECajzlDEntvIDXELyLpnDhgUOBfjgDZWEASCTSo1//EQDlD1AIf2EWDOUoxGMWy1F5fHwhGhtHv/77179DNSGpF3PfF2OX82BB74PfYe0T+acfINHW6xlPwNd5LEZq0vF6NLGYNDqDvsesMIgeEgN/GrFJtet3bzc35E6R7DMUUwoqsyuMDgyf+cLEpGCYz6aQy6BEuh7pvXKzey5RFVaFwsGPECvWVFBVKGgNVMi9jCZ9jJa7KgBpNpEGleqg764E4gWtlA0+B+BLd0d8ybyqgUi9jtFStYdWaXmlEmKV/olpCNdaCmPqbsUgwJwVAjUsgvmUgc7lk333VsIBr87TBvSsvxJEJc+1HvY2gLQCPHhHeNJ6sS9SVNDnQDYzdZciPvfApbmDOPTnCaTp4CeCdZquxpaGXEg/BHDwkm44KZSGJlcVJPBZdTBAfgWerSyGdcRIgAdcQOoby8iWpDFMfviKex4L8gG7uVcBZZypGSNgIUx5/vzVGSAgo2dBwYYQU3N/BDbw0Qc/zcPkk6+uVNlOlklVlLiHNX0/YWbBGVPSUqAvR6OYJUIAWIG/h7DF+sdO0iYFaRuZtG1yE2mTttKGvFnLBb7duX6IIExnbeOCOqzDUEHQy1kEoxHdZGwB6O8S+nuEPxHO8kOUPO6U/dt1ju+LO3Z8a0WwLCkYnTS5xbUH7AJHcbBFNAKc1zA0DTiK8oi2ZmIgL8QyTUo0aK/kIAvcIFb0aRb6bnQj7zkMpxCGPBTIrPIbd9VZ5zKuJqIJcrHAVsE2T7IHrmopfb8mmghaynB3rxNMO3/bMhy58yX3uRuttoek7ibkV1sEdVUcwx7ulP0UlGTIpzOfD3mSI+wLs/k6EDSTSeoV19jeBWMzkXa8DM4jN4jFinGV8m0T8StpM2UhuzXp9nGzeMuWB7WbffAWy8N66oR1enPacaMwtVYFiCmQNVBMbGJhotlKE3DPxJhaloNNYmu6helBuEtZNG8AuDDabIB9XJPRZbOIFqq1TASX+4moaIQyVrZ2jl2BlYDQ2Si9FKoYBi+Vve8Dzc344wFE1GyrRrOt1j3uENIsFkMaWUi7pEmp6PV8A+1Z/fAXiPt/bZb9GQvGyaQi+8uazEttbZN8lTdlL9XYk+M4mDggVocYhGDakvNun82zeTBUif9CLE4uK/NKBwRBPubBIxntl4+VnotOdMWRTJNY4JUNInywXoMibgZhlA8hRSG+xgCKgQFIjfIkUPtlWvlLsXZWR4jirTxyZ/qgDES3mgxkL/UtqeEjYFTX0rDzjIYlR0hry8DObwfiJq6+K8aKOuv6gXyQyjxumsZWJJTsIJ4fcCqg5aPzx5skUjV+8cb2tOkAtt4Uteq0kbUKWuxemWObmNSO0t+IQO4XlLYL8AmPhj7bmXa411BDMO2C+rl7UsO7EuFeDJ6PWaA0NUZoqaWHOlZa5g2yO0ssNUM8w+mtK1xwFVOxPrpE/ax+P6vVhxDYJRCfTUotQk3LIbplmPCApH30jazpPk0/bcwuxG4RH4FAGlUgzzaqiQFWarDsL3msInM9ED9pkyo82TNJr22T7K0SRSdeI0Bp1neYlckKwwNNq8DbL8FbxXXQjKvQ3By1wb06yvriLk4h7G5g5beSObfC/VzBvtoI+7gF7OMHAnsX1xbV8xB/m0jXCcrTAn+MgXG2pZBPdw8XrTjk4fzHXiyx5foB3tHD1PGfZvhr++E/3ZnCHwTdNUFPFwnMA0G/dkStgLf2cu2v2Vjc30yhpjUPM2n2MHHaWgb55JZMQiudTjiUH6rDXXBLzbz3mp2Je1443SzkNJQ8rQmZtxMyvyUhp8sTdypl3LMs6lDbhqcUa5D8/A8Jve5S/8CDC+ar7a7Uu6rdy+KD9T4YD1Bpe7Ms94Qt10IvtbyP372rLGnzXiVS+5JK+IZuXw/lqyw6DUMRnI7k+l/7IPVqd9q12VjE0ZLbWWfSDZVDNC52F8OUQbGNdVvTLA1bTr6oZDs6xrplOrpNiUmdvenCtWtMDTi/vDm9fQBbOrd74KSimdrdQrZWPEctcN4anjtso9aTkEPmz2qZqh8NKxH4pYrAr9Kdg1e1SCyM/YddFq1mbrSWZPrWDaPy7TmarqkczebjJzda/rpmV+GOlr/Up7brXbfPDxpX27cej6muweenjO7mFNpab5Ta4I1ak52l2nRoqfXxNOB/+YGlh3k8rZmrVEVZon5b5bwb8au1vbObeWDsj9rqEBzVzOsRffc2539az7HQh0jQwPSw1xFK7+Vbwu15oejghsxQUfINLlsziiFa22eJIzsJ0d0Spfc4CqH1qEUcyzYsw6SmadtZJmbZ2AFmCWkYoWJt+1D88d3bVgwSJHJvjKhLdtn0PRTHdMxDbwdvgLoVI5LYS04k7KLKioZtCdHwplzoVk1LpV3YvpFhPWA2BAqm4302AG+FEO2nqVuJe1U3vR10M9c77xAcHf3nb/9Cj6B4+09k9sjjQ3L239Sm9H6sfLdd6CYtkc6sqiejNnoyOoz/UpqiCEqTuuzt1H5T6rK329qmMWUJD8LQZ25QWVCt5lrFr8ndyQJrYTmQqK8GUKP5uwHpF0tLOVLdz4ovll0qLbyWh1Wh+W5DEnqPwBAzTRyMxgWMHYGRLhx8wnwkvyP4BQ8mcCe+iBiP28F0Tdp+j4hRqh9Qlb4szzNesAtx8K4VVmrL6eEgZOn0kAiJ2aEFXG46ObvneWcZN/Kst3romfbk15xrce7NqjnQ1c46v1nd68GU9gFpb2i7FWy3Hijfiu2yLbbLA3zP7IGAu/Hs7jQ9t4A+QuIUyZuV3KGr4rZohq1ykHdxw5PhVbe8lZ4reMWu9x7LM+qLJLQJ/T2OoHT1ntjB03TLtAzdxOLXC+78iynTPRQhO57Yx0IV3izlju02dVhe46OqCrHc4KLa8fGWOnGbCVthRY70dJ1gSm0C8tYgFBkPRwn6NXewYYueRRzmH3junEWlNe/SE/Q9/HeOTpF6JhTkzD1n3/5JF574F3QM7vjPj+F2+vz7IxSna+MblnFLi+PlEeysJPexMs5jOenq4oj86Z0YpjFa/0gWv2LP08xI/SaP1smklu3Obl9mN6ja3iXqJ3aaJfgsYj/NWXBVEl52U8pttEFuEDSP0SMlvccFyYHg8uMs10ku7/n/QhNCc5zs1xmqQjsu/rKKuM5+fvHT/wJQSwcIRiDdoekOAAAuUgAAUEsBAhQAFAAIAAgARnx1Q0XM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACABGfHVDRiDdoekOAAAuUgAADAAAAAAAAAAAAAAAAABeAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAIEPAAAAAA==" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" />
| + | {{#widget:Iframe |
| + | |url=https://tube.geogebra.org/material/iframe/id/329343/width/957/height/645/border/888888/rc/false/ai/false/sdz/true/smb/false/stb/false/stbh/true/ld/false/sri/true/at/preferhtml5 |
| + | |width=957 |
| + | |height=645 |
| + | |border=0 |
| + | }} |
Version vom 29. November 2014, 23:09 Uhr
Mit Hilfe dieser Animation läßt sich die Zeigerdarstellung nachvollziehen. Wer sich erstmal die Grundlagen von Sinus und Cosinus am Einheitskreis anschauen möchte, kann dies bei der Animation "Sinus und Cosinus im Einheitskreis" tun. Eine Beschreibung des Bogenmaßes gibt die Animation Bogenmaß, Gradmaß und Umdrehungsmaß im Vergleich.
Die Zeit kann man mit dem Schieberegler verändern oder die Animationsgeschwindigkeit größer als Null einstellen.
An der Spitze des Zeigers kann man seine Länge verändern. Die Drehgeschwindigkeit ω des Zeigers kann man am
oberen Schieberegler einstellen.