Der Doppelspaltversuch mit Licht: Unterschied zwischen den Versionen
(→Versuch: Der Doppelspalt-Versuch mit dem Licht einer Glühlampe) |
(→Versuch: Der Doppelspalt-Versuch mit dem Licht einer Glühlampe) |
||
(21 dazwischenliegende Versionen des gleichen Benutzers werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
− | + | ([[Inhalt_Kursstufe|'''Kursstufe''']] > [[Inhalt_Kursstufe#Die Welleneigenschaften des Lichts|'''Die Welleneigenschaften des Lichts''']]) | |
+ | ==Beispiele== | ||
+ | <gallery widths=180px heights=130px perrow=3 > | ||
+ | Bild:Petersdom_Lichtstrahl.jpg|"Das kleinste Licht oder Lichttheilchen, welches getrennt von dem übrigen Lichte für sich allein aufgefangen oder ausgesandt werden kann, oder allein etwas thut oder erleidet, was das übrige Licht nicht thut, noch erleidet, - dies nenne ich einen Lichtstrahl."<ref>[[Literatur/Links#Geschichte_der_Physik|Isaac, Newton: "Optik"]] S.5 ([https://archive.org/details/bub_gb_Z0FGAAAAYAAJ Online bei Internet Archive])</ref> | ||
+ | Bild:Christiaan Huygens Zeichnung zur Lichtausbreitung.png|"Man wird nicht zweifeln können, dass das Licht in der Bewegung einer gewissen Materie besteht [...] und sich ebenso wie diejenige des Schalles in kugelförmigen Flächen oder Wellen ausbreitet;"<ref>[[Literatur/Links#Geschichte_der_Physik|Huygens, Christiaan: "Licht"]] S.10-11 ([https://archive.org/stream/abhandlungberda00mewegoog#page/n12/mode/2up Online bei Internet Archive])</ref> | ||
+ | Bild:Veritasium Double Slit Filmstill.jpg|Video: [https://www.youtube.com/watch?v=Iuv6hY6zsd0 The Original Double Slit Experiment] | ||
+ | Bild:Lichtbeugung_Haar_Beobachtung.jpg|Wenn ein Haar direkt vor das Auge geweht wird... | ||
+ | Bild:Schatten_Fahrrad.jpg|Ein Schatten-Radler. | ||
+ | Bild:Doppel_Fenster.jpg|Ein doppeltes Fenster. | ||
+ | </gallery> | ||
+ | |||
+ | ==Versuche== | ||
===Erster Versuch: Doppelspaltversuch mit dem Licht einer Glühlampe=== | ===Erster Versuch: Doppelspaltversuch mit dem Licht einer Glühlampe=== | ||
− | [[Datei:Mikrowellen_Doppelspalt.jpg|thumb|Doppelspalt mit Mikrowellen]] | + | [[Datei:Mikrowellen_Doppelspalt.jpg|thumb|[[Beugung und Interferenz von elektromagnetischen Wellen (Mikrowellen)|Doppelspalt mit Mikrowellen]] ]] |
;Erster Aufbau | ;Erster Aufbau | ||
Wir "wissen" irgendwoher, dass Licht eine Welle, genauer einer elektromagnetische Welle ist. Also sollte Licht auch die typischen Welleneigenschaften der Beugung und der Interferenz zeigen. Licht sollte also in den geometrischen Schattenraum eindringen können und die Überlagerung zweier Lichtwellen sollte je nach Situation hell oder dunkel sein. | Wir "wissen" irgendwoher, dass Licht eine Welle, genauer einer elektromagnetische Welle ist. Also sollte Licht auch die typischen Welleneigenschaften der Beugung und der Interferenz zeigen. Licht sollte also in den geometrischen Schattenraum eindringen können und die Überlagerung zweier Lichtwellen sollte je nach Situation hell oder dunkel sein. | ||
Zeile 39: | Zeile 50: | ||
;Erklärung | ;Erklärung | ||
− | Das Phänomen ist | + | Das Phänomen ist ähnlich wie die [[Interferenz; Überlagerung von Wellen|Interferenz von Schallwellen]] oder von [[Beugung und Interferenz von elektromagnetischen Wellen (Mikrowellen)|Mikrowellen]] zu interpretieren. |
− | + | ||
− | + | ||
+ | Offensichtlich dringt das Licht von beiden Seiten des Haares in den Schattenraum ein. Nach dem Huygensschen Prinzip gehen von allen Stellen rechts und links des Haares Elementarwellen aus. Die Lichtwellen beider Seiten überlagern sich hinter dem Haar. Es kommt zu konstruktiver und destruktiver Interferenz. | ||
Bemerkenswert ist dabei, dass das Licht auf einer Strecke von nur einem Meter bis zu mehreren Zentimetern von der geradlinigen Ausbreitung abweicht! | Bemerkenswert ist dabei, dass das Licht auf einer Strecke von nur einem Meter bis zu mehreren Zentimetern von der geradlinigen Ausbreitung abweicht! | ||
− | + | Will man das Interferenzmuster genauer begründen, so ergeben sich Unterschiede zu einer Interferenz von zwei Kreiswellen. Denn rechts und links neben dem Haar werden in einem ganzen Bereich Wellen ausgesendet. Die Betrachtung der [[Der Einfachspaltversuch|Lichtbeugung an einem Spalt]] liefert die Lösung. | |
− | + | Nur die bunten Abschnitte in den Lichtstreifen bei der Glühbirne sind noch zu erklären: Weißes Licht besteht aus allen sichtbaren Farben des "Regenbogens" von violett über blau, grün und gelb zu rot. Das violette Licht hat die kürzeste Wellenlänge und das rote die längste. Wie bei mechanischen Wellen ist die Größe des Interferenzmusters von der Wellenlänge abhängig. Das violette Muster ist am kleinsten, das rote am größten. Wir sehen die Überlagerung dieser Muster. | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
===Versuch: Der Doppelspalt-Versuch mit Laserlicht=== | ===Versuch: Der Doppelspalt-Versuch mit Laserlicht=== | ||
Zeile 59: | Zeile 65: | ||
;Erklärung | ;Erklärung | ||
− | |||
− | |||
− | |||
===Versuch: Der Doppelspalt-Versuch mit dem Licht einer Glühlampe=== | ===Versuch: Der Doppelspalt-Versuch mit dem Licht einer Glühlampe=== | ||
Zeile 68: | Zeile 71: | ||
<gallery widths=150px heights=130px perrow=3 > | <gallery widths=150px heights=130px perrow=3 > | ||
Bild:Interferenz_Glühlampe_Aufbau_0.jpg|Eine Glühlampe als Lichtquelle | Bild:Interferenz_Glühlampe_Aufbau_0.jpg|Eine Glühlampe als Lichtquelle | ||
− | Bild:Interferenz_Glühlampe_Aufbau_1.jpg|Die Kondensorlinse ist so plaziert, dass sie die Glühwendel scharf auf den Schirm abbildet. | + | Bild:Interferenz_Glühlampe_Aufbau_1.jpg|Die Kondensorlinse (f=50mm) ist so plaziert, dass sie die Glühwendel scharf auf den Schirm abbildet. |
Bild:Interferenz_Glühlampe_Aufbau_2.jpg|Der Spalt wirkt als Blende und macht das Bild dunkler und schärfer. | Bild:Interferenz_Glühlampe_Aufbau_2.jpg|Der Spalt wirkt als Blende und macht das Bild dunkler und schärfer. | ||
− | Bild:Interferenz_Glühlampe_Aufbau_3.jpg|Die Linse bildet den Spalt auf dem Schirm ab. | + | Bild:Interferenz_Glühlampe_Aufbau_3.jpg|Die Linse (f=100mm) bildet den Spalt auf dem Schirm ab. |
Bild:Interferenz_Glühlampe_Aufbau_Doppelspalt.jpg|Zum Schluss noch der Doppelspalt. Am besten in den Fokus hinter der Sammellinse. | Bild:Interferenz_Glühlampe_Aufbau_Doppelspalt.jpg|Zum Schluss noch der Doppelspalt. Am besten in den Fokus hinter der Sammellinse. | ||
Bild:Interferenz_Glühlampe_Aufbau_andere_Seite.jpg|Von der anderen Seite gesehen. (Hier mit einem Gitter) | Bild:Interferenz_Glühlampe_Aufbau_andere_Seite.jpg|Von der anderen Seite gesehen. (Hier mit einem Gitter) | ||
Zeile 84: | Zeile 87: | ||
;Erklärung | ;Erklärung | ||
− | == | + | ====Animation==== |
− | + | In dieser [http://www.walter-fendt.de/ph14d/doppelspalt.htm Animation] ist statt eines kleinen Hindernisses ein Doppelspalt im Lichtweg. Die beiden Spalte sind dabei die Ausgangspunkte der Elementarwellen. Man kann den Abstand zwischen den beiden Spalten und die Lichtfarbe variieren. | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
==Mathematische Beschreibung des Doppelspalts (eine Formel:)== | ==Mathematische Beschreibung des Doppelspalts (eine Formel:)== | ||
− | |||
− | Man geht davon aus, dass von jeder Spaltmitte | + | Man geht davon aus, dass sich von jeder Spaltmitte eine Elementarwelle ausbreitet. Damit erhält man genau die gleiche Situation wie bei der [[Interferenz#Zwei-Quellen-Interferenz|Zwei-Quellen-Interferenz von Schallwellen]]. Nun will man die Überlagerung berechnen, genauer, die Überlagerung an einer Stelle des Schirms. |
− | + | {| class="wikitable" style="float:right;" | |
− | + | |width="519px"| | |
− | + | Der Punkt <math>P</math> der Zeichnung ist verschiebbar. | |
− | + | |- | |
+ | | | ||
+ | {{#widget:Iframe | ||
+ | |url=https://www.geogebra.org/material/iframe/id/kAxCWMYW/width/778/height/432/border/888888/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/false/rc/false/ld/false/sdz/false/ctl/false | ||
+ | |width=519 | ||
+ | |height=289 | ||
+ | |border=0}} | ||
+ | |- | ||
+ | | | ||
+ | Die betrachtete Stelle <math>P</math> ist um <math>a</math> aus der optischen Achse verschoben und <math>L</math> vom Doppelspalt entfernt. Der Schirm befindet sich im Abstand <math>l</math> vom Doppelspalt. | ||
+ | <br>Die Spaltmitten haben einen Abstand <math>d</math> voneinander und <math>\Delta s</math> ist der Gangunterschied der beiden Strahlen.| | ||
+ | |} | ||
An der Stelle <math>P</math> überlagern sich zwei Schwingungen gleicher Frequenz, aber evt. unterschiedlicher Phase<ref>Vgl. mit der [[Überlagerung_von_harmonischen_Schwingungen#Schwingungen_mit_gleicher_Frequenz|Überlagerung von mechanischen Schwingungen]] oder [[Interferenz; Überlagerung von Wellen|mechanischen Wellen]].</ref> . | An der Stelle <math>P</math> überlagern sich zwei Schwingungen gleicher Frequenz, aber evt. unterschiedlicher Phase<ref>Vgl. mit der [[Überlagerung_von_harmonischen_Schwingungen#Schwingungen_mit_gleicher_Frequenz|Überlagerung von mechanischen Schwingungen]] oder [[Interferenz; Überlagerung von Wellen|mechanischen Wellen]].</ref> . | ||
Die Phasenverschiebung hängt direkt mit dem Unterschied der Weglänge der Elementarwellen von den Spalten bis zur Stelle <math>P</math>, dem sogenannten ''Gangunterschied'' <math>\triangle s</math> zusammen. | Die Phasenverschiebung hängt direkt mit dem Unterschied der Weglänge der Elementarwellen von den Spalten bis zur Stelle <math>P</math>, dem sogenannten ''Gangunterschied'' <math>\triangle s</math> zusammen. | ||
− | Ist z.B. <math>\triangle s = 2 \ \lambda</math>, so ist die Phasenverschiebung <math>2\cdot 2\pi</math> und die Amplitude der Schwingung ist groß ("konstruktive Interferenz"). Ist <math>\triangle s = 1{,}5 \ \lambda</math>, so ist die Phasenverschiebung <math>1{,5}\cdot 2\pi</math> und die Amplitude der Schwingung ist null("destruktive Interferenz"). | + | Ist z.B. <math>\triangle s = 2 \ \lambda</math>, so ist die Phasenverschiebung <math>2\cdot 2\pi</math> und die Amplitude der Schwingung ist groß ("konstruktive Interferenz"). Ist <math>\triangle s = 1{,}5 \ \lambda</math>, so ist die Phasenverschiebung <math>1{,5}\cdot 2\pi</math> und die Amplitude der Schwingung ist null ("destruktive Interferenz"). |
− | In der weiteren Rechnung nimmt man vereinfachend an, dass die Strecken <math>S_1 P</math> und <math>S_2 P</math> parallel sind, denn <math> | + | In der weiteren Rechnung nimmt man vereinfachend an, dass die Strecken <math>S_1 P</math> und <math>S_2 P</math> parallel sind, was für einen "großen" Abstand zwischen Schirm und Spalt gerechtfertigt ist, denn dann ist <math>L</math> wesentlich größer als <math>d</math>. Diese Näherung wird auch "Fernfeld-Näherung", "Fraunhofer-Näherung" oder "Fraunhofer-Beugung" genannt. |
− | Dann sind die beiden rechtwinkligen Dreiecke <math> | + | Dann sind die beiden rechtwinkligen Dreiecke <math>S_1 R S_2</math> und <math>M O P</math> ähnlich, denn sie haben gleiche Winkel. Demnach gilt: |
:<math>\frac{\triangle s}{d} = \frac{a}{L} = \sin(\alpha)</math> | :<math>\frac{\triangle s}{d} = \frac{a}{L} = \sin(\alpha)</math> | ||
Weil man den Abstand <math>L</math> schlecht messen kann, <math>l</math> aber gut, kann man <math>L</math> entweder mit dem Satz des Pythagoras berechnen oder man setzt bei "kleinem" Winkel <math>\alpha</math> auch einfach <math>l \approx L</math> als Näherung ein: | Weil man den Abstand <math>L</math> schlecht messen kann, <math>l</math> aber gut, kann man <math>L</math> entweder mit dem Satz des Pythagoras berechnen oder man setzt bei "kleinem" Winkel <math>\alpha</math> auch einfach <math>l \approx L</math> als Näherung ein: | ||
Zeile 133: | Zeile 128: | ||
<math>\triangle s = k \ \lambda - 1/2 \ \lambda \quad \text{destruktive Interferenz: Minimum k-ter Ordnung (k= 1,2,...)}</math> | <math>\triangle s = k \ \lambda - 1/2 \ \lambda \quad \text{destruktive Interferenz: Minimum k-ter Ordnung (k= 1,2,...)}</math> | ||
|} | |} | ||
+ | |||
+ | ==Vergleich der verschiedenen Experimente== | ||
+ | Bei allen Experimenten hat man ähnliche Ergebnisse, nämlich eine Art Strichmuster und auch die Erklärung des Phänomens mit Hilfe der Beugung und Interferenz von Licht wellen ist gleich. Die Unterschiede liegen im Detail. Folgende Stellschrauben hat das Experiment. Jede Veränderung einer dieser Möglichkeiten bewirkt auch eine Veränderung im Ergebnis: | ||
+ | |||
+ | *der Abstand zwischen den Spalten und dem Schirm | ||
+ | *der Abstand der Spalte voneinander, bzw. die Breite des Hindernisses | ||
+ | *die Farbe des Lichtes | ||
+ | |||
+ | :Die Veränderungen durch diese drei Stellschrauben wurden bereits vollständig durch die obigen Überlegungen beschrieben. | ||
+ | |||
+ | *die Anzahl der Spalte | ||
+ | |||
+ | :Vergrößert man die Anzahl der Spalte immer mehr, so spricht man auch von Dreifachspalten, Vierfachspalten usw. Bei "ganz vielen" Spalten spricht man von einem sogenannten [[Optische Gitter|Gitter]]. | ||
+ | |||
+ | *die Breite der Spalte | ||
+ | |||
+ | :Die Frage, wie die Spaltbreite das Ergebnis verändert führt direkt zur Betrachtung des [[Der Einfachspaltversuch|Einfachspaltes]]. | ||
+ | |||
+ | *die Art der Lichtquelle: Glühlampe, Laser oder andere... | ||
+ | |||
+ | :Die Veränderungen durch die Art der Lichtquelle führen natürlich zu der Frage wie die Glühlampe und der Laser ihr Licht "produzieren", denn offensichtlich hat das Licht der beiden Quellen eine unterschiedliche Qualität. Diese Qualität wird durch den Begriff der [[Die Kohärenz von Licht|Kohärenz von Licht]] beschrieben. | ||
==Fußnoten== | ==Fußnoten== | ||
<references /> | <references /> | ||
− | |||
==Links== | ==Links== | ||
Zeile 142: | Zeile 157: | ||
**[http://surendranath.tripod.com/Applets/Optics/Slits/DoubleSlitID/DSID.html Animation: Doppelspalt Farbe, Spaltabstand und Spaltbreite variabel] (Surendranath B.) | **[http://surendranath.tripod.com/Applets/Optics/Slits/DoubleSlitID/DSID.html Animation: Doppelspalt Farbe, Spaltabstand und Spaltbreite variabel] (Surendranath B.) | ||
**[http://www.leifiphysik.de/web_ph11_g8/simulationen/14doppelspalt/korea/doppels_keimyung.htm Animation: Mehrfachspalte Farbe, Spaltabstand, Spaltbreite und Anzahl der Spalte einstellbar] (LEIFI: Uni Keimyung Southkorea) | **[http://www.leifiphysik.de/web_ph11_g8/simulationen/14doppelspalt/korea/doppels_keimyung.htm Animation: Mehrfachspalte Farbe, Spaltabstand, Spaltbreite und Anzahl der Spalte einstellbar] (LEIFI: Uni Keimyung Southkorea) | ||
+ | **[http://katgym.by.lo-net2.de/c.wolfseher/web/interferenz/spektrum/spektrum.html Überlagerung der Gitterspektren höherer Ordnung] (C. Wolfseher, Geogebra) | ||
*[http://san-pc.hrz.uni-siegen.de/schulen/fjm/mathnat/dusthome/dateien/wellen/dopspalt.htm#2 Animation: Doppelspalt mit Zeigeraddition ](Friedrich-Wilhelm Dustmann, Uni Siegen) | *[http://san-pc.hrz.uni-siegen.de/schulen/fjm/mathnat/dusthome/dateien/wellen/dopspalt.htm#2 Animation: Doppelspalt mit Zeigeraddition ](Friedrich-Wilhelm Dustmann, Uni Siegen) | ||
**[http://www.pk-applets.de/phy/spalt/spalt.html Animation: Doppelspalt mit Zeiger-Addition] (Peter Kraus) | **[http://www.pk-applets.de/phy/spalt/spalt.html Animation: Doppelspalt mit Zeiger-Addition] (Peter Kraus) |
Aktuelle Version vom 8. Dezember 2022, 16:17 Uhr
(Kursstufe > Die Welleneigenschaften des Lichts)
Inhaltsverzeichnis
Beispiele
"Das kleinste Licht oder Lichttheilchen, welches getrennt von dem übrigen Lichte für sich allein aufgefangen oder ausgesandt werden kann, oder allein etwas thut oder erleidet, was das übrige Licht nicht thut, noch erleidet, - dies nenne ich einen Lichtstrahl."[1]
"Man wird nicht zweifeln können, dass das Licht in der Bewegung einer gewissen Materie besteht [...] und sich ebenso wie diejenige des Schalles in kugelförmigen Flächen oder Wellen ausbreitet;"[2]
Versuche
Erster Versuch: Doppelspaltversuch mit dem Licht einer Glühlampe
- Erster Aufbau
Wir "wissen" irgendwoher, dass Licht eine Welle, genauer einer elektromagnetische Welle ist. Also sollte Licht auch die typischen Welleneigenschaften der Beugung und der Interferenz zeigen. Licht sollte also in den geometrischen Schattenraum eindringen können und die Überlagerung zweier Lichtwellen sollte je nach Situation hell oder dunkel sein.
Da wir den Doppelspaltversuch schon mit Mikrowellen durchgeführt haben, ersetzen wir einfach den Mikrowellensender durch eine Glühlampe.
- Erste Beobachtung
Das Ergebnis ist enttäuschend: Man sieht einfach den Schatten der Aluplatten an der Wand. Von Beugung und Interferenz keine Spur!
- Erstes Ergebnis
Eigentlich ist das Ergebnis nicht überraschend. Denn uns ist geläufig, dass der Schatten von Gegenständen, wie unserer Hand einen mehr oder weniger scharfen Schatten bilden. Interferenzmuster haben wir da noch nie gesehen.
Das kann eigentlich nur daran liegen, dass der Doppelspalt zu groß ist. Wahrscheinlich ist die Wellenlänge des Lichtes viel kleiner als die der Mikrowellen. Daher muss auch der Spalt kleiner sein!
Versuch: Der Schatten eines Haares
- Erster Aufbau
Wesentlich kleiner als der Doppelspalt für die Mikrowellen ist ein menschliches Haar. Es ersetzt die mittlere Aluplatte. Das Licht kann nur rechts oder links vorbei.
Wir halten uns ein Haar unmittelbar vor das Auge und schauen in die Glühbirne. Das Lämpchen darf dabei nicht zu nahe sein (min. 2m) und es sollte ansonsten im Raum dunkel sein.
- Beobachtung
Außerhalb eines hellen Lichtflecks sehen wir wieder zwei Lichtstreifen, die von dem Lämpchen auszugehen scheinen. Die Lichtstreifen sind senkrecht zur Ausrichtung des Haares. Die Lichtstreifen sind in regelmäßigen Abständen dunkel und farbig.
- Zweiter Aufbau
Wir halten ein Haar in den Lichtstrahl eines roten Lasers und betrachten uns den "Schatten" an der Wand.
Man kann auch das Ergebnis bei Haare von verschiedenen Personen vergleichen und einen grünen Laser verwenden.
- Beobachtung
Wir sehen wieder einen Lichtstreifen senkrecht zum Haar. Der Streifen ist in regelmäßigen Abständen hell und dunkel, diesmal aber nur rot.
Wir messen folgende Größen mit Mikrometerschraube und Lineal bei dem roten Laser:
Dicke des Haares: 0,05 mm Abstand Haar-Wand: 1 m Abstand Mitte des Musters - 2. dunkle Stelle: 1,8 cm
- Erklärung
Das Phänomen ist ähnlich wie die Interferenz von Schallwellen oder von Mikrowellen zu interpretieren.
Offensichtlich dringt das Licht von beiden Seiten des Haares in den Schattenraum ein. Nach dem Huygensschen Prinzip gehen von allen Stellen rechts und links des Haares Elementarwellen aus. Die Lichtwellen beider Seiten überlagern sich hinter dem Haar. Es kommt zu konstruktiver und destruktiver Interferenz. Bemerkenswert ist dabei, dass das Licht auf einer Strecke von nur einem Meter bis zu mehreren Zentimetern von der geradlinigen Ausbreitung abweicht!
Will man das Interferenzmuster genauer begründen, so ergeben sich Unterschiede zu einer Interferenz von zwei Kreiswellen. Denn rechts und links neben dem Haar werden in einem ganzen Bereich Wellen ausgesendet. Die Betrachtung der Lichtbeugung an einem Spalt liefert die Lösung.
Nur die bunten Abschnitte in den Lichtstreifen bei der Glühbirne sind noch zu erklären: Weißes Licht besteht aus allen sichtbaren Farben des "Regenbogens" von violett über blau, grün und gelb zu rot. Das violette Licht hat die kürzeste Wellenlänge und das rote die längste. Wie bei mechanischen Wellen ist die Größe des Interferenzmusters von der Wellenlänge abhängig. Das violette Muster ist am kleinsten, das rote am größten. Wir sehen die Überlagerung dieser Muster.
Versuch: Der Doppelspalt-Versuch mit Laserlicht
- Aufbau
- Beobachtung
- Erklärung
Versuch: Der Doppelspalt-Versuch mit dem Licht einer Glühlampe
- Aufbau
Vergleiche dazu auch eine Liste von verschiedenen Aufbaumöglichkeiten. (LEIFI)
- Beobachtung
- Erklärung
Animation
In dieser Animation ist statt eines kleinen Hindernisses ein Doppelspalt im Lichtweg. Die beiden Spalte sind dabei die Ausgangspunkte der Elementarwellen. Man kann den Abstand zwischen den beiden Spalten und die Lichtfarbe variieren.
Mathematische Beschreibung des Doppelspalts (eine Formel:)
Man geht davon aus, dass sich von jeder Spaltmitte eine Elementarwelle ausbreitet. Damit erhält man genau die gleiche Situation wie bei der Zwei-Quellen-Interferenz von Schallwellen. Nun will man die Überlagerung berechnen, genauer, die Überlagerung an einer Stelle des Schirms.
Der Punkt [math]P[/math] der Zeichnung ist verschiebbar. |
|
Die betrachtete Stelle [math]P[/math] ist um [math]a[/math] aus der optischen Achse verschoben und [math]L[/math] vom Doppelspalt entfernt. Der Schirm befindet sich im Abstand [math]l[/math] vom Doppelspalt.
|
An der Stelle [math]P[/math] überlagern sich zwei Schwingungen gleicher Frequenz, aber evt. unterschiedlicher Phase[3] .
Die Phasenverschiebung hängt direkt mit dem Unterschied der Weglänge der Elementarwellen von den Spalten bis zur Stelle [math]P[/math], dem sogenannten Gangunterschied [math]\triangle s[/math] zusammen. Ist z.B. [math]\triangle s = 2 \ \lambda[/math], so ist die Phasenverschiebung [math]2\cdot 2\pi[/math] und die Amplitude der Schwingung ist groß ("konstruktive Interferenz"). Ist [math]\triangle s = 1{,}5 \ \lambda[/math], so ist die Phasenverschiebung [math]1{,5}\cdot 2\pi[/math] und die Amplitude der Schwingung ist null ("destruktive Interferenz").
In der weiteren Rechnung nimmt man vereinfachend an, dass die Strecken [math]S_1 P[/math] und [math]S_2 P[/math] parallel sind, was für einen "großen" Abstand zwischen Schirm und Spalt gerechtfertigt ist, denn dann ist [math]L[/math] wesentlich größer als [math]d[/math]. Diese Näherung wird auch "Fernfeld-Näherung", "Fraunhofer-Näherung" oder "Fraunhofer-Beugung" genannt. Dann sind die beiden rechtwinkligen Dreiecke [math]S_1 R S_2[/math] und [math]M O P[/math] ähnlich, denn sie haben gleiche Winkel. Demnach gilt:
- [math]\frac{\triangle s}{d} = \frac{a}{L} = \sin(\alpha)[/math]
Weil man den Abstand [math]L[/math] schlecht messen kann, [math]l[/math] aber gut, kann man [math]L[/math] entweder mit dem Satz des Pythagoras berechnen oder man setzt bei "kleinem" Winkel [math]\alpha[/math] auch einfach [math]l \approx L[/math] als Näherung ein:
[math]\sin(\alpha) = \frac{\triangle s}{d} = \frac{a}{L} =\frac{a}{\sqrt{a^2+l^2}}\approx \frac{a}{l} \qquad \triangle s: \text{Gangunterschied zu den ''Spaltmitten''}[/math] [math]\triangle s = k \ \lambda \qquad \qquad \text{konstruktive Interferenz: Maximum k-ter Ordnung (k= 0,1,...)}[/math] [math]\triangle s = k \ \lambda - 1/2 \ \lambda \quad \text{destruktive Interferenz: Minimum k-ter Ordnung (k= 1,2,...)}[/math] |
Vergleich der verschiedenen Experimente
Bei allen Experimenten hat man ähnliche Ergebnisse, nämlich eine Art Strichmuster und auch die Erklärung des Phänomens mit Hilfe der Beugung und Interferenz von Licht wellen ist gleich. Die Unterschiede liegen im Detail. Folgende Stellschrauben hat das Experiment. Jede Veränderung einer dieser Möglichkeiten bewirkt auch eine Veränderung im Ergebnis:
- der Abstand zwischen den Spalten und dem Schirm
- der Abstand der Spalte voneinander, bzw. die Breite des Hindernisses
- die Farbe des Lichtes
- Die Veränderungen durch diese drei Stellschrauben wurden bereits vollständig durch die obigen Überlegungen beschrieben.
- die Anzahl der Spalte
- Vergrößert man die Anzahl der Spalte immer mehr, so spricht man auch von Dreifachspalten, Vierfachspalten usw. Bei "ganz vielen" Spalten spricht man von einem sogenannten Gitter.
- die Breite der Spalte
- Die Frage, wie die Spaltbreite das Ergebnis verändert führt direkt zur Betrachtung des Einfachspaltes.
- die Art der Lichtquelle: Glühlampe, Laser oder andere...
- Die Veränderungen durch die Art der Lichtquelle führen natürlich zu der Frage wie die Glühlampe und der Laser ihr Licht "produzieren", denn offensichtlich hat das Licht der beiden Quellen eine unterschiedliche Qualität. Diese Qualität wird durch den Begriff der Kohärenz von Licht beschrieben.
Fußnoten
- ↑ Isaac, Newton: "Optik" S.5 (Online bei Internet Archive)
- ↑ Huygens, Christiaan: "Licht" S.10-11 (Online bei Internet Archive)
- ↑ Vgl. mit der Überlagerung von mechanischen Schwingungen oder mechanischen Wellen.
Links
- Animation: Doppelspalt Farbe und Spaltabstände variabel (Walter Fendt)
- Animation: Doppelspalt Farbe, Spaltabstand und Spaltbreite variabel (Surendranath B.)
- Animation: Mehrfachspalte Farbe, Spaltabstand, Spaltbreite und Anzahl der Spalte einstellbar (LEIFI: Uni Keimyung Southkorea)
- Überlagerung der Gitterspektren höherer Ordnung (C. Wolfseher, Geogebra)
- Animation: Doppelspalt mit Zeigeraddition (Friedrich-Wilhelm Dustmann, Uni Siegen)
- Animation: Doppelspalt mit Zeiger-Addition (Peter Kraus)
- RCL: Ferngesteuertes Experiment: Doppelspalt(Remotely Controlled Laboratories - RCLs, Uni Kaiserslautern)
- Video Zwei Steine in den Teich werfen (Youtube: Überlagerung und Interferenz zweier Kreiswellen von rastelli43)
- Applet mit Interferenz zweier Kreis- oder Kugelwellen (Walter Fendt)
- Doppelspaltsimulation von Peter Kraus (pk-applets.de)
- Animation der Interferenz von Schall-, Wasser- oder Lichtwellen ("Interactive Simulations" der University of Colorado at Boulder)
- Zwei Quellen Interferenz (LEIFI)
- The Original Double Slit Experiment (youtube: veritaserum)