Die Bewegungsgesetze einer harmonischen Schwingung: Unterschied zwischen den Versionen

Aus Schulphysikwiki
Wechseln zu: Navigation, Suche
(Berechnung des Beschleunigungsgesetzes)
(Beispiel: Federpendel)
 
(Eine dazwischenliegende Version des gleichen Benutzers werden nicht angezeigt)
Zeile 70: Zeile 70:
 
:<math>E_{kin}=\frac{1}{2}m \, v^2 = \frac{p^2}{2\, m}</math>
 
:<math>E_{kin}=\frac{1}{2}m \, v^2 = \frac{p^2}{2\, m}</math>
  
Die "restlichen" Energieformen wie Spann- und Lageenergie ergänzen die Bewegungsenergie immer zu einer konstanten Summe. (Zumindest bei einer ungedämpften Schwingung.) Die maximale Bewegungsenergie ist die Energiemenge, die im Laufe der Zeit ständig ihre Form (den Träger wechselt). Diese Energiemenge ist daher auch die Gesamtenergie der Schwingung!  
+
Die "restlichen" Energieformen wie Spann- und Lageenergie ergänzen die Bewegungsenergie immer zu einer konstanten Summe. (Zumindest bei einer ungedämpften Schwingung.) Die maximale Bewegungsenergie ist die Energiemenge, die im Laufe der Zeit ständig ihre Form (den Träger) wechselt. Diese Energiemenge ist daher auch die Gesamtenergie der Schwingung!  
  
 
:<math>E_{kin} = \frac{1}{2} m\, \hat y^2 \omega^2 \cos^2(w\, t) \qquad \qquad \hat E_{kin} = E_{ges} = \frac{1}{2} m \, \hat y^2 \omega^2 </math> ist die maximale Bewegungsenergie.
 
:<math>E_{kin} = \frac{1}{2} m\, \hat y^2 \omega^2 \cos^2(w\, t) \qquad \qquad \hat E_{kin} = E_{ges} = \frac{1}{2} m \, \hat y^2 \omega^2 </math> ist die maximale Bewegungsenergie.
Zeile 103: Zeile 103:
 
==Beispiel: Federpendel==
 
==Beispiel: Federpendel==
 
[[Bild:Federpendel_paint.JPG|thumb|left|Das Federpendel  benötigt für 10 Schwingungen 12s bei einer Amplitude von 9cm.]]
 
[[Bild:Federpendel_paint.JPG|thumb|left|Das Federpendel  benötigt für 10 Schwingungen 12s bei einer Amplitude von 9cm.]]
:<math>T=1{,}2\, \rm s \qquad f=\frac{1}{1{,}2\, \rm s}\approx 0{,}83 \,\rm Hz \qquad \omega= \frac {2\, \pi}{1{,}2\,\rm s} \approx 5{,}24\,\rm Hz</math>  
+
:<math>\hat y = 9\,{\rm cm} \qquad T=1{,}2\, \rm s \qquad f=\frac{1}{1{,}2\, \rm s}\approx 0{,}83 \,\rm Hz \qquad \omega= \frac {2\, \pi}{1{,}2\,\rm s} \approx 5{,}24\,\rm Hz</math>  
  
 
:<math>s(t)=9\,{\rm cm}  \sin( 5{,}24\,{\rm Hz} \ t)</math>
 
:<math>s(t)=9\,{\rm cm}  \sin( 5{,}24\,{\rm Hz} \ t)</math>

Aktuelle Version vom 18. August 2016, 15:27 Uhr

(Kursstufe > Mechanische Schwingungen)


Ausgehend vom Ortsgesetz [math]y(t) = \hat y \sin (\omega t)[/math] kann man alle wichtigen Merkmale einer harmonischen Schwingung relativ einfach mathematisch herleiten:

[math]y(t) = \hat y \sin (\omega t) \qquad \hat y[/math] ist die maximale Auslenkung (Amplitude).
[math] v(t) = \hat v \cos(\omega t)\qquad \hat v = \hat y \, \omega [/math] ist die maximale Geschwindigkeit.
[math]a(t)= \hat a \sin(\omega \, t)\qquad \hat a = -\hat y \, \omega ^2 [/math] ist die maximale Beschleunigung.
[math]F = -D \, y[/math] mit [math]D = m \, \omega^2[/math]
[math]E_{ges} = \frac{1}{2} m \, \hat y^2 \omega^2 [/math]
Die Energie einer harmonischen Schwingung ist proportional
zum Quadrat der Frequenz und zum Quadrat der Amplitude.
[math]\omega^2= \frac{D}{m}[/math] oder [math]\omega= \sqrt{\frac{D}{m}}[/math]  ; [math] f = \frac{1}{2\pi}\sqrt{\frac{D}{m}}[/math]  ; [math] T = 2\pi \sqrt{\frac{m}{D}}[/math]
Das Quadrat der Frequenz ist proportional zur Federkonstanten und antiproportional zur Masse.
Die Frequenz hängt nicht von der Amplitude ab.

Das Ortsgesetz

Aus der Zeigerdarstellung oder aus der Differentialgleichung folgt beidesmal der sinusförmige Verlauf der Elongation, also des Ortes:

[math]y = \hat y \sin (\omega t)[/math]

Berechnung des Geschwindigkeitsgesetzes

Die Geschwindigkeit ist die zeitliche Änderungsrate des Ortes, also muss man nach der Zeit ableiten. Dabei muss man die Kettenregel beachten.

[math]v(t)=\dot s (t) = \dot{\hat y \sin(\omega t)} = \hat y \cos(\omega t) \omega[/math] (Wiederholung: [math][f(g(t))]'= f'(g(t)) \, g'(t)[/math])
[math] v(t) = \hat y \omega \, \cos(\omega t) = \hat v \cos(\omega t)\qquad \qquad \hat v = \hat y \omega [/math] ist die maximale Geschwindigkeit.

Berechnung des Beschleunigungsgesetzes

Um die Beschleunigung zu erhalten, muss man die Geschwindigkeit erneut ableiten.

[math]a(t) = \dot v(t) = \hat y \omega \, {\dot \cos(\omega t)} = \hat y \omega (-\sin(\omega t)) \omega[/math]
[math]a(t)=-\hat y \omega^2 \sin(\omega t) = \hat a \sin(\omega \, t)\qquad \qquad \hat a = -\hat y \omega ^2 [/math] ist die maximale Beschleunigung.

Folgerungen aus den Bewegungsgesetzen

Impuls

Der Impuls hängt direkt mit der Geschwindigkeit über [math]p=m \, v[/math] zusammen:

[math]p(t)=m \, \hat y\, \omega \, \cos(\omega\, t) \qquad \qquad \hat p = m\, \hat y \,\omega[/math] ist der maximale Impuls.

Kraft

In Abhängigkeit von der Zeit

Die Beschleunigung hängt direkt mit der wirkenden Kraft über [math]F=m\ a[/math] zusammen, daher folgt:

[math]F(t)=-m\, \hat y\, \omega^2 \ \sin(\omega\, t) = \hat F \sin(\omega\, t)\qquad \qquad \hat F = -m\, \hat y \,\omega ^2[/math] ist die maximale Kraft.

In Abhängigkeit vom Ort

Außerdem folgt aus dem sinusförmigen zeitlichen Kraftverlauf auch der lineare Zusammenhang von Kraft und Auslenkung, wie bei einer Feder. Denn aus

[math]F = -m\, \hat y\, \omega^2 \ \sin(\omega\, t)[/math]

folgt mit

[math]\hat y \, \sin(\omega t) = y [/math]:
[math]F = - D \, y[/math] , mit [math] D = m \omega^2[/math]

Die Proportionalitätskonstante [math]D[/math] gibt an, wie die Rückstellkraft mit der Auslenkung zunimmt, zB: [math]D= \rm 12 \, N/m[/math]. Im Falle einer Feder heißt D Federkonstante, beim Fadenpendel mit kleiner Amplitude hängt D sogar von der Masse ab.

Energie

In Abhängigkeit von der Zeit

Die Bewegungsenergie hängt direkt mit der Geschwindigkeit, bzw. mit dem Impuls zusammen:

[math]E_{kin}=\frac{1}{2}m \, v^2 = \frac{p^2}{2\, m}[/math]

Die "restlichen" Energieformen wie Spann- und Lageenergie ergänzen die Bewegungsenergie immer zu einer konstanten Summe. (Zumindest bei einer ungedämpften Schwingung.) Die maximale Bewegungsenergie ist die Energiemenge, die im Laufe der Zeit ständig ihre Form (den Träger) wechselt. Diese Energiemenge ist daher auch die Gesamtenergie der Schwingung!

[math]E_{kin} = \frac{1}{2} m\, \hat y^2 \omega^2 \cos^2(w\, t) \qquad \qquad \hat E_{kin} = E_{ges} = \frac{1}{2} m \, \hat y^2 \omega^2 [/math] ist die maximale Bewegungsenergie.

Die Energie einer harmonischen Schwingung ist proportional zur Masse, zum Quadrat der Frequenz und zum Quadrat der Amplitude.

Wegen [math]\sin^2(t) + \cos^2(t) = 1[/math][1] ist der die Bewegungsenergie ergänze Anteil der potentiellen Energie gerade:

[math]E_{pot}= \hat E \, \sin^2(w\, t)[/math]

In Abhängigkeit vom Ort

Wegen des linearen Kraftverlaufs [math]F = - D \, y[/math] oder wegen [math]E_{pot}= \frac{1}{2} m\, \hat y^2 \omega^2 \sin^2(w\, t)[/math] folgt direkt:

[math]E_{pot} = \frac{1}{2} D \, y^2[/math]
[math]E_{kin} = E_{ges} - E_{pot} = E_{ges} - \frac{1}{2} D \, y^2[/math]

Frequenz

Bei der Berechnung der Kraft ergab sich bereits der Zusammenhang [math]D=\omega^2 \ m[/math]. Dieses Ergebnis läßt sich auch so begründen:

Die maximal wirkende Rückstellkraft läßt sich auf zwei Arten berechnen. Einmal über die maximale Beschleunigung [math]-\hat y \,\omega^2 [/math] und einmal über die maximale Auslenkung [math]\hat y[/math].

[math]\hat F = m \,\hat a = -D\,\hat y[/math]

[math]\Rightarrow -m\, \hat y \,\omega^2 = -D \,\hat y [/math]. Teilt man nun noch durch die Amplitude [math]\hat y[/math] und die Masse [math]m[/math], so folgt:

[math]\omega^2= \frac{D}{m}[/math] oder [math]\omega= \sqrt{\frac{D}{m}}[/math]  ; [math] f = \frac{1}{2\pi}\sqrt{\frac{D}{m}}[/math]  ; [math] T = 2\pi \sqrt{\frac{m}{D}}[/math]

Das Quadrat der Frequenz ist proportional zur Federkonstanten und antiproportional zur Masse.

Die Frequenz hängt nicht von der Amplitude ab!

Die Schwingungsdauer, bzw Frequenz folgt aus der Kreisfrequenz mit: [math] \omega=2\,\pi\, f [/math] und [math] T = \frac{1}{f}[/math]

Beispiel: Federpendel

Das Federpendel benötigt für 10 Schwingungen 12s bei einer Amplitude von 9cm.
[math]\hat y = 9\,{\rm cm} \qquad T=1{,}2\, \rm s \qquad f=\frac{1}{1{,}2\, \rm s}\approx 0{,}83 \,\rm Hz \qquad \omega= \frac {2\, \pi}{1{,}2\,\rm s} \approx 5{,}24\,\rm Hz[/math]
[math]s(t)=9\,{\rm cm} \sin( 5{,}24\,{\rm Hz} \ t)[/math]
[math]v(t)=9\,{\rm cm} \cdot 5{,}24\,{\rm Hz} \cos({5{,}24\,\rm Hz} \, t) = 47{,}1\,{\rm \frac{cm}{s}} \cos({5{,}24\,\rm Hz} \, t)[/math]

Die maximale Geschwindigkeit des Federpendels beim Durchgang durch die Ruhelage beträgt also [math]47{,}1\,{\rm \frac{cm}{s}}[/math].

Aufgaben

Zu 108.2

[math]\omega[/math]: Winkelgeschwindigkeit [math]f[/math]: Umläufe pro Zeit

z.B.: [math]f = 2Hz[/math]

[math]w = 2*\pi*\left( \frac{1}{s} \right)= 4*\pi*\left( \frac{1}{s} \right)[/math]

[math]\Rightarrow \omega=2*\pi*f[/math] und weil [math] f=\left( \frac{1}{T} \right)[/math]


[math] \omega=\left( \frac{2*\pi}{T} \right)[/math]

Zu 108.3

[math] \phi_0 [/math]: Phasenverschiebung

[math] \phi_0 = 0^\circ [/math]: Schwingung in Phase

[math] \phi_0 = \pi \, (180^\circ\!) [/math]: gegenphasig

Fußnoten

  1. Das ist gerade der Satz des Pythagoras mit Sinus und Cosinus im Einheitskreis.

Links