*: Unterschied zwischen den Versionen

Aus Schulphysikwiki
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: „__NOTOC__ ==Eigenschaften von schwerer, elektrischer und magnetischer Wechselwirkung== thumb Datei:Wechselwirkung_We…“)
 
 
(531 dazwischenliegende Versionen des gleichen Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
 
__NOTOC__
 
__NOTOC__
==Eigenschaften von schwerer, elektrischer und magnetischer Wechselwirkung==
+
{|
[[Datei:Wechselwirkung_Fernwirkung.png|thumb]]
+
|height="800px"|
[[Datei:Wechselwirkung_Wechselwirkung.png|thumb]]
+
|}
Zwei Gegenstände können eine Wechselwirkung aufeinander ausüben.
+
==Elektrischer Energietransport: Beladungsmaß und Leistung==
Aus einer mechanischen Sichtweise heraus heißt das, dass sie aufeinander [[Kraft_und_Impuls|Kräfte ausüben und Impuls austauschen]]. Ein Gegenstand verliert Impuls, der andere Gegenstand erhält den Impuls.
+
====Versuch: Eine helle Lampe====
 +
;Aufbau
 +
[[Datei:Stromkreis_Versuch_zwei_Lampen_Potential_als_Energiebeladungsmaß.jpg|thumb|Die linke Lampe ist an ein Netzgerät angeschlossen, die rechte über einen Schalter an die Steckdose.]]
 +
Eine 60W-Glühbirne ist an der Steckdose angeschlossen, die andere (12V/250mA) wird mit einem Netzgerät betrieben. Bei beiden Lampen wird die Stromstärke gemessen.
 +
;Beobachtung
 +
Durch beide Lampen fließt der gleiche Strom mit einer Stärke von ca. 0,25 Ampère, aber die an der Steckdose angeschlossene Lampe ist viel heller!
  
Offensichtlich besteht eine Wechselwirkung zwischen jeweils passenden ähnlichen Eigenschaften von Gegenständen. Es gibt drei verschiedene physikalische Eigenschaften, die Wechselwirkungen hervorrufen<ref>Außerdem gibt es noch die starke und die schwache Wechselwirkung. Meistens wird die elektro-magnetische WW nur als eine WW gezählt, dann sind es 4 WW. Die starke WW ist unter anderem dafür verantwortlich, dass die Atomkerne zusammenhalten. Die schwache WW ist beim radioaktiven Zerfall von Bedeutung.</ref>.
+
;Folgerung
 +
Offensichtlich ist "der Strom aus der Steckdose" anders als "der Strom aus dem Netzgerät". Der "Steckdosenstrom" transportiert mehr Energie!
  
'''1)''' Die (schwere) Masse (<math>m</math> in Kilogramm, <math>\rm kg</math>)
+
====Versuch: Kichererbsentransport====
:Alle Gegenstände mit einer (schweren) Masse , werden gegenseitig angezogen. ("Schwere Masse ist homosexuell." ;)
+
;Aufbau
 +
[[Datei:Energiestromstärke Leistung Versuch Erbsenstromstärke.png|400px|left]]
 +
In einer Kiste auf einer Seite des Raumes befinden sich Erbsen. (Man kann auch Streichhölzer nehmen.) Die Erbsen sollen in eine noch leere Kiste auf der anderen Seite transportiert werden. Aber jede Person darf nur zwei Erbsen nehmen!
  
'''2)''' Die elektrische Ladung (<math>Q</math> in "Coulomb", <math>1\,\rm C=1\,\rm A\,s</math>), die positiv oder negativ sein kann.
+
Wir arbeiten zusammen und schauen, wie schnell wir die Erbsen transportieren können.
:Elektrisch gleichnamige Gegenstände werden abgestoßen, ungleichnamige werden angezogen. ("Elektrische und Magnetische Ladung sind hetero und homophob<ref>Siehe [http://de.wikipedia.org/wiki/Homophobie Wikipedia: Homophobie]</ref> ." ;)
+
<br style="clear: both" />  
  
'''3)''' Die magnetische Ladung<ref>Die magnetische Ladung wird auch als [http://de.wikipedia.org/wiki/Magnetostatik Polstärke <math>p</math>] bezeichnet.</ref> (<math>Q_m</math> in "Weber", <math>1\,\rm Wb=1\,\rm V\,s</math>), die Nordpol- oder Südpolladung sein kann.
+
;Messwerte und Auswertung
:Die Enden zweier Gegenstände mit gleichnamigen magnetischen Ladungen werden abgestoßen, ungleichnamige werden angezogen.
+
In diese leere Tabelle schreiben wir unsere Ergebnisse:
 +
{|class="wikitable" style="text-align: center"
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Erbsen-<br>beladung
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Zeit-<br>spanne
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Personen-<br>anzahl
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Erbsen-<br>anzahl
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Personen-<br>stromstärke
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Erbsen-<br>stromstärke
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
<math>2\,\rm \frac{E}{P}</math>
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
.
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
.
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
.
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
.
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|}
  
*Die Wechselwirkung ist umso größer, je größer die Massen, die elektrischen oder die magnetischen Ladungen sind.
+
Ob wir uns bei den Erbsen verzählt haben, kann man leicht überprüfen. Die Personenanzahl multipliziert mit der Erbsenbeladung muss die Erbsenanzahl ergeben!
:Zwei ungleichnamige elektrische oder magnetische Ladungen schwächen sich in ihrer gemeinsamen Wirkung.
+
*Außerdem steigt die Wirkung bei kleinerem Abstand.
+
  
 +
Die Stromstärken berechnen sich als Personen pro Zeit und als Erbsen pro Zeit.
  
 +
Man bemerkt, dass man die Erbsenstromstärke auch mit Hilfe der Personenstromstärke ausrechnen kann. Dazu muss man nur die Personenstromstärke mit der Beladung multiplizieren!
  
  
Zeile 35: Zeile 97:
  
  
====Ladungsträger im Atommodell====
+
==Vergleich des Erbsentransports mit dem elektrischen Energietransport==
<gallery widths=200px heights=130px  perrow=3>
+
Mit Hilfe des Erbsentransportes können wir erklären, warum die Lampen so unterschiedlich hell leuchten. Dazu vergleichen wir den Erbsentransport durch Personen mit dem Energietransport durch die elektrische Ladung:
Bild:Festkörper_Isolator.png|Das Modell eines Isolators.
+
Bild:Festkörper_Leiter.png|Das Modell eines Leiters.
+
Bild:Festmagnet_Weiss-Bezirke_unmagnetisch.png|Das Modell eines magnetisierbaren Gegenstandes.
+
</gallery>
+
  
*Ein Atom besteht aus einem "festen" Kern aus Protonen und Neutronen mit "weicher" Elektronenhülle. (Entscheidend ist der Energieaufwand!)
+
*Die im Kreis laufenden Personen entsprechen der im Kreis fließenden Ladung: <math> \text{1 Person } \widehat{=} \text{ 1 Coulomb}</math>
 +
*Die transportierten Erbsen entsprechen der transportierten Energie: <math> \text{1 Erbse } \widehat{=} \text{ 1 Joule}</math>
 +
*Die Erbsenbeladung entspricht dem elektrischen Potential: <math> \text{1 Erbse pro Person } \widehat{=} \text{ 1 Joule pro Coulomb} = \text{1 Volt}</math>
  
 +
Jetzt können wir die entsprechende Tabelle aufstellen:
  
*Alle Materiebausteine tragen schwere Ladungen (Masse).
+
{|class="wikitable" style="text-align: center"
*Protonen tragen positive Ladung und Elektronen negative Ladung.
+
!width="16%" style="border-style: solid; border-width: 4px "|
*Manche Atome (Fe, Co, Ni) oder Legierungen sind durch die Art ihrer Elektronenhülle ein kleiner Magnet/magnetischer Dipol. (Tragen sowohl Nord- als auch Südpolladung.)<ref>Wikipedia: [https://de.wikipedia.org/wiki/Dauermagnet#Dauermagnetmaterialien Dauermagnetmaterialien] <br>[http://www.heise.de/tp/artikel/26/26091/1.html IBM sucht die Super-Festplatte] Artikel bei heise online über eine "Super-Festplatte", welche die Magnetisierung einzelner Eisenatome zur Datenspeicherung verwendet. <br/> [http://www.ssc.rwth-aachen.de/index.php?menuID=3 Schöne Bilder von atomarer Magnetstruktur] (Prof. Dr. rer. nat. Dronskowski (Institut für Anorganische Chemie, RWTH Aachen))</ref>  
+
Energie-<br>beladung
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Zeit-<br>spanne
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Ladungs-<br>menge
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Energie-<br>menge
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
(Ladungs-)<br>Stromstärke
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Energie-<br>stromstärke<br>(Leistung)
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
<math>12\,\rm V = 12\,\rm \frac{J}{C}</math>
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
<math>0{,}25\,\rm A=0{,}25\,\rm \frac{C}{s}</math>
 +
|style="border-style: solid; border-width: 4px "|
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
<math>230\,\rm V = 230\,\rm \frac{J}{C}</math>
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
<math>0{,}25\,\rm A=0{,}25\,\rm \frac{C}{s}</math>
 +
|style="border-style: solid; border-width: 4px "|
 +
|}
  
 +
Weil wir die Zeitdauer nicht kennen, die Lampen können ja eine Sekunde oder eine Stunde lang angeschaltet sein, können wir uns eine wählen.
  
*In Festkörpern sind die Atome nur schwer verschiebbar, oft in einer regelmäßigen Kristall-Struktur.
+
Wählt man als Zeitdauer eine Sekunde, ist es einfach die geflossene Ladungsmenge zu bestimmen, denn bei einer Stromstärke von 0,25 Ampère fließen ja gerade 0,25 Coulomb pro Sekunde!
*Die äußere Elektronenhülle ist bei manchen Festkörpern ("Leiter") "leicht" verschiebbar, bei anderen ("Isolator") nicht.
+
In zwei Sekunden fließen daher 0,5 Coulomb usw.
*Die atomaren Magnete sind je nach Art des Festkörpers mehr oder weniger leicht auszurichten.
+
  
====Entstehung der Ursachen / Ladungen====
+
Die transportierte Energiemenge ergibt sich aus der geflossenen Ladung mal dem Beladungsmaß.
<gallery widths=200px heights=200px  perrow=3 >
+
Bild:Ladungsverschiebung.png|Elektronen sind vom oberen auf den unteren Gegenstand gebracht worden.
+
Bild:Ladungsverschiebung_einfach.png|Dadurch ist der obere Gegenstand positiv, der untere negativ geladen.
+
Bild:leer.jpg
+
Bild:Festmagnet_Weiss-Bezirke_magnetisch.png|Bei einem Festmagneten sind die atomaren Magnete überwiegend gleich ausgerichtet.
+
Bild:Festmagnet_vollständig_magnetisiert.png|Dieser Festmagnet ist sogar vollständig magnetisiert.
+
Bild:Festmagnet_mit_Ladungen.png|Vereinfachte Darstellung mit Magnetisierungslinien, die von Südpol- zu Nordpolladungen verlaufen.
+
Bild:Elektret teilweise polarisiert.png|Bei diesem Elektret<ref>Elektrete sind das elektrische Analogon zu Magneten. Sie enthalten atomare elektrische Dipole, die dauerhaft in eine bestimmte Richtung zeigen können. Dadurch entstehen an den Rändern Polarisationsladungen. (Siehe Wikipedia: [https://de.wikipedia.org/wiki/Elektret Elektret]) Hauptanwendung ist die Herstellung von Elektretmikrophonen. (Siehe Wikipedia: [https://de.wikipedia.org/wiki/Elektretmikrofon Elektretmikrophon])</ref> sind die atomaren Dipole überwiegend gleich ausgerichtet.
+
Bild:Elektret vollständig polarisiert.png|Dieser Elektret ist sogar vollständig polarisiert.
+
Bild:Elektret mit Ladungen.png|Vereinfachte Darstellung mit Polarisierungslinien, die von negativen zu positiven Ladungen verlaufen.
+
</gallery>
+
  
*Um einen Gegenstand elektrisch zu laden kann man elektrische Ladungen verschieben, man kann sie nicht erzeugen.
+
Die Energiestromstärke kann man jetzt entweder als Energie pro Zeit berechnen oder als Ladungsstromstärke mal Beladungsmaß.
*Um einen Gegenstand zu magnetisieren, muss man seine atomaren Magnete ausrichten.
+
**Bei der Magnetisierung eines Gegenstandes entsteht an den Rändern genausoviel Nordpol- wie Südpolladung. Die Summe der Ladungen ist Null.
+
**Durch Erhitzung oder Erschütterungen werden die atomaren Magnete eines magnetisierbaren Gegenstandes beweglich.
+
*Um einen Gegenstand zu polarisieren, muss man seine atomaren elektrischen Dipole ausrichten.
+
**Bei der Polarisierung eines Gegenstandes entsteht an den Rändern genausoviel positive wie negative Ladung. Die Summe der Ladungen ist Null.
+
**Durch Erhitzung oder Erschütterungen werden die atomaren Dipole eines polarisierbaren Gegenstandes beweglich.
+
 
+
 
+
 
+
*Bringt man positive und negative Ladung an einer Stelle zusammen, so schwächt sich die Wirkung. Entscheidend ist der Ladungsunterschied.
+
*Bringt man Nordpolladung und Südpolladung an einer Stelle zusammen, so schwächt sich die Wirkung. Entscheidend ist der Ladungsunterschied.
+
*Ein Gegenstand mit ebensoviel positiver wie negativer Ladung wirkt nach Außen wie ein neutraler Gegenstand, wenn die Ladungen gleichmäßig verteilt sind.
+
*Ein Gegenstand mit ebensoviel Nordpol- wie Südpol-Ladung wirkt nach Außen wie ein neutraler Gegenstand, wenn die Ladungen gleichmäßig verteilt sind.
+
 
+
====Vergleiche====
+
=====Stärke=====
+
Im Alltag ist die magnetische Wechselwirkung am stärksten. Schon kleine Magnete werden mit großen Kräften zusammengezogen. Elektrische Kräfte, wie zwischen zwei geriebenen Luftballons sind verhältnismäßig klein.
+
 
+
Erst bei großen Massen wie der Erde ist die schwere Wechselwirkung deutlich spürbar.
+
 
+
=====Reichweite=====
+
*Es gibt keine negative Massen.
+
*Die meisten Gegenstände enthalten fast gleichviel positive und negative elektrische Ladung. (Weil gleichnamige Ladung voneinander abgestoßen wird, ist es schwer elektrische Ladung anzuhäufen.)
+
*Alle Gegenstände enthalten gleichviel Nord- und Südpolladung.
+
 
+
Im Gegensatz zur elektrischen Ladung kann man von schwerer Masse ganz viel anhäufen. In einem großen Abstand wirkt daher nur noch die Gravitation von massereichen Gegenständen, wie Erde, Mond oder Sonne. Bei einem Magnet heben sich in größerer Entfernung die Wirkung der beiden Pole auf.
+
 
+
=====Beweglichkeit/Magnetisierung/Polarisierung/Influenz<ref>Die Begriffe Influenz und Polarisierung beschreiben die Veränderung eines Gegenstandes in der Nähe von elektrischen oder magnetischen Ladungen. Man kann also von elektrischer oder magnetischer Polarisation/Influenz sprechen. Bei Magneten hat sich zusätzlich der Begriff der Magnetisierung eingebürgert. Von "Elektrisierung" dagegen spricht man im physikalischen Sinne nicht. Dieser Begriff wird eher umgangssprachlich für eine Verschiebung der elektrischen Ladung benutzt.</ref>=====
+
<gallery widths=260px heights=100px  perrow=3 >
+
Bild:Influenz_magnetisch_1.png|'''Magnetisierung (magnetische Influenz):''' Ein unmagnetischer aber magnetisierbarer Gegenstand.
+
Bild:Influenz_magnetisch_2.png|Wird in der Nähe eines Südpols magnetisiert.
+
Bild:Influenz_magnetisch_3.png|Vereinfachte Darstellung mit Magnetisierungslinien, die von Südpol- zu Nordpolladungen verlaufen.
+
Bild:Influenz_elektrisch_1.png|'''Verschiebungspolarisation (elektrische Influenz):''' Ein Isolator wird in der Nähe eines geladenen Gegenstandes...
+
Bild:Influenz_elektrisch_2.png|polarisiert. Die Elektronenhüllen verschieben sich.
+
Bild:Influenz_elektrisch_3.png|Vereinfachte Darstellung mit Polarisierungslinien, die von negativen zu positiven Ladungen verlaufen.
+
Bild:Influenz_Wasser_1.png|'''Orientierungspolarisation (elektrische Influenz):''' Haben die Moleküle einen elektrischen Dipol (zB Wasser)...
+
Bild:Influenz_Wasser_2.png|so werden die Moleküle gedreht.
+
Bild:Influenz_elektrisch_3.png|Nach Außen ergibt sich das gleiche Ergebnis wie bei der Verschiebung der Elektronenhüllen.
+
Bild:Influenz_elektrisch_Leiter_1.png|'''Ladungsverschiebung (elektrische Influenz):''' Bei einem Leiter werden in der Nähe eines geladenen Gegenstandes...
+
Bild:Influenz_elektrisch_Leiter_2.png|Ladungen verschoben.
+
Bild:Influenz_elektrisch_Leiter_3.png|Der Gegenstand ist nicht polarisiert. <br>Es entsteht trotzdem ein elektrischer Dipol.
+
</gallery>
+
*Elektrische Ladung ist in einigen Stoffen sehr beweglich, in anderen nicht.
+
*Magnetische Ladung ist immer fest an den magnetisierten Gegenstand gebunden.
+
 
+
*In einem elektrisch neutralen Gegenstand werden in der Nähe eines elektrisch geladenen Gegenstandes die Ladungen verschoben. (elektrische Influenz)
+
*In einem magnetisierbaren Gegenstand werden in der Nähe einer magnetischen Ladung die atomaren Magnete ausgerichtet. (magnetische Influenz)
+
 
+
*Elektrische Ladungen lassen sich nur sehr schlecht speichern/anhäufen. Elektrische Ladungen lassen sich nur schwer trennen.
+
*Ein Gramm Kupfer hat eine positive Ladung von fast 3 Millionen Coulomb!
+
 
+
*Bei Nichtleitern gibt es keine frei beweglichen Elektronen, aber die Elektronenhülle ist trotzdem verschiebbar.
+
 
+
==Häufige Fehler==
+
*Die Magnetpole befinden sich an den Enden der Magnetisierung. Es ist sinnvoll diese farbig zu markieren. Häufig wird aber eine ganze Hälfte eines Permanentmagneten grün oder rot gezeichnet.
+
 
+
==Fußnoten==
+
<references />
+

Aktuelle Version vom 30. April 2025, 12:19 Uhr

Elektrischer Energietransport: Beladungsmaß und Leistung

Versuch: Eine helle Lampe

Aufbau
Die linke Lampe ist an ein Netzgerät angeschlossen, die rechte über einen Schalter an die Steckdose.

Eine 60W-Glühbirne ist an der Steckdose angeschlossen, die andere (12V/250mA) wird mit einem Netzgerät betrieben. Bei beiden Lampen wird die Stromstärke gemessen.

Beobachtung

Durch beide Lampen fließt der gleiche Strom mit einer Stärke von ca. 0,25 Ampère, aber die an der Steckdose angeschlossene Lampe ist viel heller!

Folgerung

Offensichtlich ist "der Strom aus der Steckdose" anders als "der Strom aus dem Netzgerät". Der "Steckdosenstrom" transportiert mehr Energie!

Versuch: Kichererbsentransport

Aufbau
Energiestromstärke Leistung Versuch Erbsenstromstärke.png

In einer Kiste auf einer Seite des Raumes befinden sich Erbsen. (Man kann auch Streichhölzer nehmen.) Die Erbsen sollen in eine noch leere Kiste auf der anderen Seite transportiert werden. Aber jede Person darf nur zwei Erbsen nehmen!

Wir arbeiten zusammen und schauen, wie schnell wir die Erbsen transportieren können.

Messwerte und Auswertung

In diese leere Tabelle schreiben wir unsere Ergebnisse:

Erbsen-
beladung

Zeit-
spanne

Personen-
anzahl

Erbsen-
anzahl

Personen-
stromstärke

Erbsen-
stromstärke

2EP

.

.

.

.

Ob wir uns bei den Erbsen verzählt haben, kann man leicht überprüfen. Die Personenanzahl multipliziert mit der Erbsenbeladung muss die Erbsenanzahl ergeben!

Die Stromstärken berechnen sich als Personen pro Zeit und als Erbsen pro Zeit.

Man bemerkt, dass man die Erbsenstromstärke auch mit Hilfe der Personenstromstärke ausrechnen kann. Dazu muss man nur die Personenstromstärke mit der Beladung multiplizieren!







Vergleich des Erbsentransports mit dem elektrischen Energietransport

Mit Hilfe des Erbsentransportes können wir erklären, warum die Lampen so unterschiedlich hell leuchten. Dazu vergleichen wir den Erbsentransport durch Personen mit dem Energietransport durch die elektrische Ladung:

  • Die im Kreis laufenden Personen entsprechen der im Kreis fließenden Ladung: 1 Person ˆ= 1 Coulomb
  • Die transportierten Erbsen entsprechen der transportierten Energie: 1 Erbse ˆ= 1 Joule
  • Die Erbsenbeladung entspricht dem elektrischen Potential: 1 Erbse pro Person ˆ= 1 Joule pro Coulomb=1 Volt

Jetzt können wir die entsprechende Tabelle aufstellen:

Energie-
beladung

Zeit-
spanne

Ladungs-
menge

Energie-
menge

(Ladungs-)
Stromstärke

Energie-
stromstärke
(Leistung)

12V=12JC

0,25A=0,25Cs

230V=230JC

0,25A=0,25Cs

Weil wir die Zeitdauer nicht kennen, die Lampen können ja eine Sekunde oder eine Stunde lang angeschaltet sein, können wir uns eine wählen.

Wählt man als Zeitdauer eine Sekunde, ist es einfach die geflossene Ladungsmenge zu bestimmen, denn bei einer Stromstärke von 0,25 Ampère fließen ja gerade 0,25 Coulomb pro Sekunde! In zwei Sekunden fließen daher 0,5 Coulomb usw.

Die transportierte Energiemenge ergibt sich aus der geflossenen Ladung mal dem Beladungsmaß.

Die Energiestromstärke kann man jetzt entweder als Energie pro Zeit berechnen oder als Ladungsstromstärke mal Beladungsmaß.