*: Unterschied zwischen den Versionen

Aus Schulphysikwiki
Wechseln zu: Navigation, Suche
 
(509 dazwischenliegende Versionen des gleichen Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
__NOTOC__  
+
__NOTOC__
==Zum Kondensator==
+
{|
 +
|height="800px"|
 +
|}
 +
==Elektrischer Energietransport: Beladungsmaß und Leistung==
 +
====Versuch: Eine helle Lampe====
 +
;Aufbau
 +
[[Datei:Stromkreis_Versuch_zwei_Lampen_Potential_als_Energiebeladungsmaß.jpg|thumb|Die linke Lampe ist an ein Netzgerät angeschlossen, die rechte über einen Schalter an die Steckdose.]]
 +
Eine 60W-Glühbirne ist an der Steckdose angeschlossen, die andere (12V/250mA) wird mit einem Netzgerät betrieben. Bei beiden Lampen wird die Stromstärke gemessen.
 +
;Beobachtung
 +
Durch beide Lampen fließt der gleiche Strom mit einer Stärke von ca. 0,25 Ampère, aber die an der Steckdose angeschlossene Lampe ist viel heller!
  
'''1)''' Vergleichen Sie einen Kondensator mit einem Fahrradreifen.
+
;Folgerung
 +
Offensichtlich ist "der Strom aus der Steckdose" anders als "der Strom aus dem Netzgerät". Der "Steckdosenstrom" transportiert mehr Energie!
  
'''2)''' Beschreiben Sie eine technische Bauform eines Kondensators.
+
====Versuch: Kichererbsentransport====
:(Wikipedia: [https://de.wikipedia.org/wiki/Kondensator_(Elektrotechnik)#Bauarten_und_Bauformen Bauformen von Kondensatoren], [https://duckduckgo.com/?q=capacitor+inside&t=ffsb&iax=1&ia=images Bilder], ...)
+
;Aufbau
 +
[[Datei:Energiestromstärke Leistung Versuch Erbsenstromstärke.png|400px|left]]
 +
In einer Kiste auf einer Seite des Raumes befinden sich Erbsen. (Man kann auch Streichhölzer nehmen.) Die Erbsen sollen in eine noch leere Kiste auf der anderen Seite transportiert werden. Aber jede Person darf nur zwei Erbsen nehmen!
  
'''3)''' Ein idealer Kondensator hat eine konstante Kapazität von 0,33F bei maximal 5V Spannung. Zeichnen Sie die U(Q)-Kennlinie. Lesen Sie an der Kennlin
+
Wir arbeiten zusammen und schauen, wie schnell wir die Erbsen transportieren können.
 +
<br style="clear: both" />
  
'''4)''' Wie verändert ein Dielektrikum die Eigenschaften eines Kondensators? Was bedeutet <math>\epsilon_r=3</math>?ie ab wieviel Ladung und Energie der Kondensator maximal aufnehmen kann.
+
;Messwerte und Auswertung
 +
In diese leere Tabelle schreiben wir unsere Ergebnisse:
 +
{|class="wikitable" style="text-align: center"
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Erbsen-<br>beladung
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Zeit-<br>spanne
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Personen-<br>anzahl
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Erbsen-<br>anzahl
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Personen-<br>stromstärke
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Erbsen-<br>stromstärke
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
<math>2\,\rm \frac{E}{P}</math>
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
.
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
.
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
.
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
.
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|}
  
'''5)''' Berechnen Sie für einen Plattenkondensator mit kreisförmigen Platten (r=12,25cm) im Abstand von 1cm die Kapazität mit Luft im Zwischenraum.
+
Ob wir uns bei den Erbsen verzählt haben, kann man leicht überprüfen. Die Personenanzahl multipliziert mit der Erbsenbeladung muss die Erbsenanzahl ergeben!
  
Der Kondensator wird mit 10kV geladen. Berechnen Sie:
+
Die Stromstärken berechnen sich als Personen pro Zeit und als Erbsen pro Zeit.
:a) wie stark das elektrische Feld ist,
+
:b) die Kapazität des Kondensators,
+
:c) wieviel Ladung auf den Platten ist,
+
:d) wieviel Energie gespeichert ist und  
+
:e) welche Kraft auf die Platten wirkt.
+
  
:f) Nun füllt man den Zwischenraum des Kondensators mit Polytetrafluorethylen (Teflon). Es hat eine Permittivität von <math>\epsilon_r= 2</math>. Dann lädt man den Kondensator wieder mit 10kV auf. Berechnen Sie, wie sich die Werte von a) bis e) verändern und wie sich die Energie auf das Feld und das polarisierte Teflon verteilt.
+
Man bemerkt, dass man die Erbsenstromstärke auch mit Hilfe der Personenstromstärke ausrechnen kann. Dazu muss man nur die Personenstromstärke mit der Beladung multiplizieren!
  
'''6)''' Ein Liter Benzin enthält ca. 30 MJ Energie. Welcher Kondensator könnte das Benzin als Energieträger ersetzen?
 
<br/>Baut man einen Plattenkondensator mit Luft zwischen den Platten, so springt ab einer Feldstärke von 2,5 kV/mm ein Funke über und der Kondensator ist entladen.
 
:a) Entwerfen Sie einen Plattenkondensator, der die gleiche Energiemenge wie ein Liter Benzin speichern kann. (Tipp: Berechnen Sie zuerst die maximale Energiedichte des Kondensators! Dann legen Sie die Spannung fest und berechnen damit den Abstand und die Fläche.)
 
  
Um die Durchschlagsfestigkeit (das ist die maximale Feldstärke) des Kondensators zu erhöhen, bringt man ein Dielektrikum zwischen die Platten:
+
 
:{|class="wikitable"
+
 
!Dielektrikum
+
 
!<math>E_{max}</math>
+
 
!<math>\epsilon_r</math>
+
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
==Vergleich des Erbsentransports mit dem elektrischen Energietransport==
 +
Mit Hilfe des Erbsentransportes können wir erklären, warum die Lampen so unterschiedlich hell leuchten. Dazu vergleichen wir den Erbsentransport durch Personen mit dem Energietransport durch die elektrische Ladung:
 +
 
 +
*Die im Kreis laufenden Personen entsprechen der im Kreis fließenden Ladung: <math> \text{1 Person } \widehat{=} \text{ 1 Coulomb}</math>
 +
*Die transportierten Erbsen entsprechen der transportierten Energie: <math> \text{1 Erbse } \widehat{=} \text{ 1 Joule}</math>
 +
*Die Erbsenbeladung entspricht dem elektrischen Potential: <math> \text{1 Erbse pro Person } \widehat{=} \text{ 1 Joule pro Coulomb} = \text{1 Volt}</math>
 +
 
 +
Jetzt können wir die entsprechende Tabelle aufstellen:
 +
 
 +
{|class="wikitable" style="text-align: center"
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Energie-<br>beladung
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Zeit-<br>spanne
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Ladungs-<br>menge
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Energie-<br>menge
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
(Ladungs-)<br>Stromstärke
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Energie-<br>stromstärke<br>(Leistung)
 
|-
 
|-
|Glas
+
|style="border-style: solid; border-width: 4px "|  
|<math>20\,\rm\frac{kV}{mm}</math>
+
<math>12\,\rm V = 12\,\rm \frac{J}{C}</math>
|<math>7</math>
+
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
<math>0{,}25\,\rm A=0{,}25\,\rm \frac{C}{s}</math>
 +
|style="border-style: solid; border-width: 4px "|
 
|-
 
|-
|Polypropylen
+
|style="border-style: solid; border-width: 4px "|  
|<math>52\,\rm\frac{kV}{mm}</math>
+
<math>230\,\rm V = 230\,\rm \frac{J}{C}</math>
|<math>2{,}1</math>
+
|style="border-style: solid; border-width: 4px "|
|-
+
|style="border-style: solid; border-width: 4px "|
|[https://de.wikipedia.org/wiki/Bariumtitanat Bariumtitanat]
+
|style="border-style: solid; border-width: 4px "|
|<math>500\,\rm\frac{kV}{mm}</math>
+
|style="border-style: solid; border-width: 4px "|
|<math>1000</math> bis <math>10000</math>
+
<math>0{,}25\,\rm A=0{,}25\,\rm \frac{C}{s}</math>
 +
|style="border-style: solid; border-width: 4px "|
 
|}
 
|}
:b) Entwerfen Sie für die verschiedenen Dielektrika wieder einen Kondensator, der 30MJ Energie aufnehmen kann!
 
  
'''7)''' Ein aufgeladener Plattenkondensator wird von der Spannungsquelle getrennt und die Platten auseinandergezogen.  
+
Weil wir die Zeitdauer nicht kennen, die Lampen können ja eine Sekunde oder eine Stunde lang angeschaltet sein, können wir uns eine wählen.  
:a) Wie verändert sich die Spannung, die Ladungsmenge auf den Platten und die Kapazität?
+
 
:b) Wie verändert sich die Feldstärke und der Energiegehalt?
+
Wählt man als Zeitdauer eine Sekunde, ist es einfach die geflossene Ladungsmenge zu bestimmen, denn bei einer Stromstärke von 0,25 Ampère fließen ja gerade 0,25 Coulomb pro Sekunde!
:c) Wo kommt die nötige Energie her?
+
In zwei Sekunden fließen daher 0,5 Coulomb usw.
 +
 
 +
Die transportierte Energiemenge ergibt sich aus der geflossenen Ladung mal dem Beladungsmaß.
  
'''8)''' Bei dem Plattenkondensator bleibt beim Auseinanderziehen diesmal die Spannungsquelle angeschlossen. Man stellt sich die gleichen Fragen:
+
Die Energiestromstärke kann man jetzt entweder als Energie pro Zeit berechnen oder als Ladungsstromstärke mal Beladungsmaß.
:a) Wie verändert sich die Spannung, die Ladungsmenge auf den Platten und die Kapazität?
+
:b) Wie verändert sich die Feldstärke und der Energiegehalt?
+
:c) Wo kommt die nötige Energie her?
+

Aktuelle Version vom 30. April 2025, 12:19 Uhr

Elektrischer Energietransport: Beladungsmaß und Leistung

Versuch: Eine helle Lampe

Aufbau
Die linke Lampe ist an ein Netzgerät angeschlossen, die rechte über einen Schalter an die Steckdose.

Eine 60W-Glühbirne ist an der Steckdose angeschlossen, die andere (12V/250mA) wird mit einem Netzgerät betrieben. Bei beiden Lampen wird die Stromstärke gemessen.

Beobachtung

Durch beide Lampen fließt der gleiche Strom mit einer Stärke von ca. 0,25 Ampère, aber die an der Steckdose angeschlossene Lampe ist viel heller!

Folgerung

Offensichtlich ist "der Strom aus der Steckdose" anders als "der Strom aus dem Netzgerät". Der "Steckdosenstrom" transportiert mehr Energie!

Versuch: Kichererbsentransport

Aufbau
Energiestromstärke Leistung Versuch Erbsenstromstärke.png

In einer Kiste auf einer Seite des Raumes befinden sich Erbsen. (Man kann auch Streichhölzer nehmen.) Die Erbsen sollen in eine noch leere Kiste auf der anderen Seite transportiert werden. Aber jede Person darf nur zwei Erbsen nehmen!

Wir arbeiten zusammen und schauen, wie schnell wir die Erbsen transportieren können.

Messwerte und Auswertung

In diese leere Tabelle schreiben wir unsere Ergebnisse:

Erbsen-
beladung

Zeit-
spanne

Personen-
anzahl

Erbsen-
anzahl

Personen-
stromstärke

Erbsen-
stromstärke

2EP

.

.

.

.

Ob wir uns bei den Erbsen verzählt haben, kann man leicht überprüfen. Die Personenanzahl multipliziert mit der Erbsenbeladung muss die Erbsenanzahl ergeben!

Die Stromstärken berechnen sich als Personen pro Zeit und als Erbsen pro Zeit.

Man bemerkt, dass man die Erbsenstromstärke auch mit Hilfe der Personenstromstärke ausrechnen kann. Dazu muss man nur die Personenstromstärke mit der Beladung multiplizieren!







Vergleich des Erbsentransports mit dem elektrischen Energietransport

Mit Hilfe des Erbsentransportes können wir erklären, warum die Lampen so unterschiedlich hell leuchten. Dazu vergleichen wir den Erbsentransport durch Personen mit dem Energietransport durch die elektrische Ladung:

  • Die im Kreis laufenden Personen entsprechen der im Kreis fließenden Ladung: 1 Person ˆ= 1 Coulomb
  • Die transportierten Erbsen entsprechen der transportierten Energie: 1 Erbse ˆ= 1 Joule
  • Die Erbsenbeladung entspricht dem elektrischen Potential: 1 Erbse pro Person ˆ= 1 Joule pro Coulomb=1 Volt

Jetzt können wir die entsprechende Tabelle aufstellen:

Energie-
beladung

Zeit-
spanne

Ladungs-
menge

Energie-
menge

(Ladungs-)
Stromstärke

Energie-
stromstärke
(Leistung)

12V=12JC

0,25A=0,25Cs

230V=230JC

0,25A=0,25Cs

Weil wir die Zeitdauer nicht kennen, die Lampen können ja eine Sekunde oder eine Stunde lang angeschaltet sein, können wir uns eine wählen.

Wählt man als Zeitdauer eine Sekunde, ist es einfach die geflossene Ladungsmenge zu bestimmen, denn bei einer Stromstärke von 0,25 Ampère fließen ja gerade 0,25 Coulomb pro Sekunde! In zwei Sekunden fließen daher 0,5 Coulomb usw.

Die transportierte Energiemenge ergibt sich aus der geflossenen Ladung mal dem Beladungsmaß.

Die Energiestromstärke kann man jetzt entweder als Energie pro Zeit berechnen oder als Ladungsstromstärke mal Beladungsmaß.