*: Unterschied zwischen den Versionen

Aus Schulphysikwiki
Wechseln zu: Navigation, Suche
 
(472 dazwischenliegende Versionen des gleichen Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
 
__NOTOC__
 
__NOTOC__
==Aufgaben zu Wellen==
+
{|
===Zeigermodell / Wellengleichung===
+
|height="800px"|
 +
|}
 +
==Elektrischer Energietransport: Beladungsmaß und Leistung==
 +
====Versuch: Eine helle Lampe====
 +
;Aufbau
 +
[[Datei:Stromkreis_Versuch_zwei_Lampen_Potential_als_Energiebeladungsmaß.jpg|thumb|Die linke Lampe ist an ein Netzgerät angeschlossen, die rechte über einen Schalter an die Steckdose.]]
 +
Eine 60W-Glühbirne ist an der Steckdose angeschlossen, die andere (12V/250mA) wird mit einem Netzgerät betrieben. Bei beiden Lampen wird die Stromstärke gemessen.
 +
;Beobachtung
 +
Durch beide Lampen fließt der gleiche Strom mit einer Stärke von ca. 0,25 Ampère, aber die an der Steckdose angeschlossene Lampe ist viel heller!
  
* 1) Nachdem eine Schwingung innerhalb von 3 Sekunden 6 ganze Schwingungen ausgeführt hat, hat sich diese Störung um 1,8 m ausgebreitet.
+
;Folgerung
:a) Bestimmen Sie Frequenz, Wellenlänge und Ausbreitungsgeschwindigkeit der Welle.  
+
Offensichtlich ist "der Strom aus der Steckdose" anders als "der Strom aus dem Netzgerät". Der "Steckdosenstrom" transportiert mehr Energie!
:b) Wie groß ist der Phasenunterschied zweier Schwingungen im Abstand von 3m und 33m?
+
  
* 2) Bei einer [[Grundbegriffe_und_Beispiele_zu_mechanischen_Wellen#Versuch:_gekoppelte_Pendel|Pendelkette]] sind mehrere Pendel in einem Abstand von 10 cm miteinander gekoppelt.
+
====Versuch: Kichererbsentransport====
:Wird ein Pendel angeregt, so folgen die Nachbarn 0,5 s später mit einer Phasenverschiebung von <math>\pi / 16</math>. Bestimmen Sie die Ausbreitungsgeschwindigkeit, Wellenlänge und Frequenz der Welle.  
+
;Aufbau
 +
[[Datei:Energiestromstärke Leistung Versuch Erbsenstromstärke.png|400px|left]]
 +
In einer Kiste auf einer Seite des Raumes befinden sich Erbsen. (Man kann auch Streichhölzer nehmen.) Die Erbsen sollen in eine noch leere Kiste auf der anderen Seite transportiert werden. Aber jede Person darf nur zwei Erbsen nehmen!
  
* 4) Eine Transversalwelle hat die Wellenfunktion <math>y(x,t)= 2\,{\rm cm} \, \sin(\frac{2}{\rm s} \cdot t -\frac{5}{\rm cm} \cdot x)</math>.
+
Wir arbeiten zusammen und schauen, wie schnell wir die Erbsen transportieren können.
:a) Zeichnen Sie die Welle zum Zeitpunkt t=0, also zu Beginn der Zeitrechnung, und 0,32 Sekunden später in ein Koordinatensystem. (Mit dem GTR ist das ganz einfach!)
+
<br style="clear: both" />  
:b) Bestimmen Sie Amplitude, Frequenz und Wellenlänge.
+
  
* 5) Aus dem Baden-Württembergischen [http://www.schule-bw.de/faecher-und-schularten/mathematisch-naturwissenschaftliche-faecher/physik/pruefungen-und-wettbewerbe/abiturpruefung/2007/ph07_2.htm Physik-Abitur 2007: Aufgabe II a)].
+
;Messwerte und Auswertung
 +
In diese leere Tabelle schreiben wir unsere Ergebnisse:
 +
{|class="wikitable" style="text-align: center"
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Erbsen-<br>beladung
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Zeit-<br>spanne
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Personen-<br>anzahl
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Erbsen-<br>anzahl
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Personen-<br>stromstärke
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Erbsen-<br>stromstärke
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
<math>2\,\rm \frac{E}{P}</math>
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
.
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
.
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
.
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
.
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|}
  
===Interferenz===
+
Ob wir uns bei den Erbsen verzählt haben, kann man leicht überprüfen. Die Personenanzahl multipliziert mit der Erbsenbeladung muss die Erbsenanzahl ergeben!
[[Datei:Aufgabe_Interferenz_Lautsprecher.png‎|thumb|Zwei Lautsprecher]]
+
* 1) Woran kann man im Alltag erkennen, dass sich Wellen störungsfrei überlagern?
+
  
* 2) Beschreiben Sie den Versuch mit den zwei Lautsprechern, die an einem Sinusgenerator angeschlossen sind.  
+
Die Stromstärken berechnen sich als Personen pro Zeit und als Erbsen pro Zeit.
  
* 3) Die beiden Lautsprecher sind 1,5 m voneinander entfernt und schwingen in Phase mit einer Frequenz von 858 Hz.
+
Man bemerkt, dass man die Erbsenstromstärke auch mit Hilfe der Personenstromstärke ausrechnen kann. Dazu muss man nur die Personenstromstärke mit der Beladung multiplizieren!
:a) Bestimmen Sie die Lautstärke an den Punkten A und B mit Hilfe eines Zeigerdiagramms. Vernachlässigen Sie dabei die Abnahme der Schallintensität durch den größeren Abstand vom Lautsprecher und der Dämpfung.  
+
:b) Suchen Sie zwei Stellen zwischen den Lautsprechern, bei denen der Ton besonders leise bzw. besonders laut ist.
+
:c) Wie verändert sich qualitativ die Situation in den Punkten A und B, wenn man die Änderung der Schallintensität nicht vernachlässigt?
+
:d) Bestimmen Sie die exakte Schwingungsgleichung für die Punkte A und B, wenn beide Lautsprecher mit einem Watt senden.
+
  
* 4) Auf der Wasseroberfläche in einem See werden mit den Füßen im Abstand von 80cm zwei Kreiswellen erzeugt. Die Füße bewegen sich gleichmäßig und in Phase auf und ab, und zwar 10 mal in 16 Sekunden. ([https://www.youtube.com/watch?v=ICrCcOj4lKg Video von 1:30 bis 2:15]) Die Ausbreitungsgeschwindigkeit der Wellen misst man zu 20cm/s.
 
:a) Welche Wellenlänge haben die beiden Wellen?
 
:b) Wo zwischen den Füßen befinden sich Stellen mit konstruktiver, bzw. destruktiver Interferenz? Machen Sie eine Zeichnung.
 
  
* 5) Zwei Lautsprecher erzeugen beide in einem Abstand von 1m einen Ton mit der Frequenz von 1000Hz. Zwischen den Lautsprechern misst man die Orte, an denen der Ton leise und an denen der Ton laut ist:
 
  
[[Datei:Aufgabe_zwei_Lautsprecher_Schallgeschwindigkeit.png|663px]]
 
:Bestimmen Sie aus dem Messergebnis die Schallgeschwindigkeit.
 
  
[[Datei:Beugung_an_Hafenmauer.jpg|thumb|300px|Blick auf einen kleinen Hafen]]
 
  
===Beugung===
+
 
* 1) Erklären Sie an einem Alltagsphänomen die Beugung von Wellen.
+
 
* 2) Warum haben Stereoanlagen zwei Boxen aber nur einen "Subwoofer", den man auch unter das Sofa stellen kann, was man aber besser mit den Boxen nicht tut?
+
 
* 3) Hinter einer Lärmschutzwand ist der Verkehrslärm auch ohne Sichtkontakt zur Strasse noch zu hören. Der Verkehr klingt dumpfer als beim direkten Hinhören. Erklären Sie die Beobachtungen.
+
 
* 4) Erklären Sie das Foto der Wellen an einem Hafen.
+
 
 +
 
 +
 
 +
 
 +
==Vergleich des Erbsentransports mit dem elektrischen Energietransport==
 +
Mit Hilfe des Erbsentransportes können wir erklären, warum die Lampen so unterschiedlich hell leuchten. Dazu vergleichen wir den Erbsentransport durch Personen mit dem Energietransport durch die elektrische Ladung:
 +
 
 +
*Die im Kreis laufenden Personen entsprechen der im Kreis fließenden Ladung: <math> \text{1 Person } \widehat{=} \text{ 1 Coulomb}</math>
 +
*Die transportierten Erbsen entsprechen der transportierten Energie: <math> \text{1 Erbse } \widehat{=} \text{ 1 Joule}</math>
 +
*Die Erbsenbeladung entspricht dem elektrischen Potential: <math> \text{1 Erbse pro Person } \widehat{=} \text{ 1 Joule pro Coulomb} = \text{1 Volt}</math>
 +
 
 +
Jetzt können wir die entsprechende Tabelle aufstellen:
 +
 
 +
{|class="wikitable" style="text-align: center"
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Energie-<br>beladung
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Zeit-<br>spanne
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Ladungs-<br>menge
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Energie-<br>menge
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
(Ladungs-)<br>Stromstärke
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Energie-<br>stromstärke<br>(Leistung)
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
<math>12\,\rm V = 12\,\rm \frac{J}{C}</math>
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
<math>0{,}25\,\rm A=0{,}25\,\rm \frac{C}{s}</math>
 +
|style="border-style: solid; border-width: 4px "|
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
<math>230\,\rm V = 230\,\rm \frac{J}{C}</math>
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
<math>0{,}25\,\rm A=0{,}25\,\rm \frac{C}{s}</math>
 +
|style="border-style: solid; border-width: 4px "|
 +
|}
 +
 
 +
Weil wir die Zeitdauer nicht kennen, die Lampen können ja eine Sekunde oder eine Stunde lang angeschaltet sein, können wir uns eine wählen.
 +
 
 +
Wählt man als Zeitdauer eine Sekunde, ist es einfach die geflossene Ladungsmenge zu bestimmen, denn bei einer Stromstärke von 0,25 Ampère fließen ja gerade 0,25 Coulomb pro Sekunde!
 +
In zwei Sekunden fließen daher 0,5 Coulomb usw.
 +
 
 +
Die transportierte Energiemenge ergibt sich aus der geflossenen Ladung mal dem Beladungsmaß.
 +
 
 +
Die Energiestromstärke kann man jetzt entweder als Energie pro Zeit berechnen oder als Ladungsstromstärke mal Beladungsmaß.

Aktuelle Version vom 30. April 2025, 12:19 Uhr

Elektrischer Energietransport: Beladungsmaß und Leistung

Versuch: Eine helle Lampe

Aufbau
Die linke Lampe ist an ein Netzgerät angeschlossen, die rechte über einen Schalter an die Steckdose.

Eine 60W-Glühbirne ist an der Steckdose angeschlossen, die andere (12V/250mA) wird mit einem Netzgerät betrieben. Bei beiden Lampen wird die Stromstärke gemessen.

Beobachtung

Durch beide Lampen fließt der gleiche Strom mit einer Stärke von ca. 0,25 Ampère, aber die an der Steckdose angeschlossene Lampe ist viel heller!

Folgerung

Offensichtlich ist "der Strom aus der Steckdose" anders als "der Strom aus dem Netzgerät". Der "Steckdosenstrom" transportiert mehr Energie!

Versuch: Kichererbsentransport

Aufbau
Energiestromstärke Leistung Versuch Erbsenstromstärke.png

In einer Kiste auf einer Seite des Raumes befinden sich Erbsen. (Man kann auch Streichhölzer nehmen.) Die Erbsen sollen in eine noch leere Kiste auf der anderen Seite transportiert werden. Aber jede Person darf nur zwei Erbsen nehmen!

Wir arbeiten zusammen und schauen, wie schnell wir die Erbsen transportieren können.

Messwerte und Auswertung

In diese leere Tabelle schreiben wir unsere Ergebnisse:

Erbsen-
beladung

Zeit-
spanne

Personen-
anzahl

Erbsen-
anzahl

Personen-
stromstärke

Erbsen-
stromstärke

2EP

.

.

.

.

Ob wir uns bei den Erbsen verzählt haben, kann man leicht überprüfen. Die Personenanzahl multipliziert mit der Erbsenbeladung muss die Erbsenanzahl ergeben!

Die Stromstärken berechnen sich als Personen pro Zeit und als Erbsen pro Zeit.

Man bemerkt, dass man die Erbsenstromstärke auch mit Hilfe der Personenstromstärke ausrechnen kann. Dazu muss man nur die Personenstromstärke mit der Beladung multiplizieren!







Vergleich des Erbsentransports mit dem elektrischen Energietransport

Mit Hilfe des Erbsentransportes können wir erklären, warum die Lampen so unterschiedlich hell leuchten. Dazu vergleichen wir den Erbsentransport durch Personen mit dem Energietransport durch die elektrische Ladung:

  • Die im Kreis laufenden Personen entsprechen der im Kreis fließenden Ladung: 1 Person ˆ= 1 Coulomb
  • Die transportierten Erbsen entsprechen der transportierten Energie: 1 Erbse ˆ= 1 Joule
  • Die Erbsenbeladung entspricht dem elektrischen Potential: 1 Erbse pro Person ˆ= 1 Joule pro Coulomb=1 Volt

Jetzt können wir die entsprechende Tabelle aufstellen:

Energie-
beladung

Zeit-
spanne

Ladungs-
menge

Energie-
menge

(Ladungs-)
Stromstärke

Energie-
stromstärke
(Leistung)

12V=12JC

0,25A=0,25Cs

230V=230JC

0,25A=0,25Cs

Weil wir die Zeitdauer nicht kennen, die Lampen können ja eine Sekunde oder eine Stunde lang angeschaltet sein, können wir uns eine wählen.

Wählt man als Zeitdauer eine Sekunde, ist es einfach die geflossene Ladungsmenge zu bestimmen, denn bei einer Stromstärke von 0,25 Ampère fließen ja gerade 0,25 Coulomb pro Sekunde! In zwei Sekunden fließen daher 0,5 Coulomb usw.

Die transportierte Energiemenge ergibt sich aus der geflossenen Ladung mal dem Beladungsmaß.

Die Energiestromstärke kann man jetzt entweder als Energie pro Zeit berechnen oder als Ladungsstromstärke mal Beladungsmaß.