*: Unterschied zwischen den Versionen

Aus Schulphysikwiki
Wechseln zu: Navigation, Suche
(Leere Seite)
(10) Lampen im Auto und zu Hause)
 
(398 dazwischenliegende Versionen des gleichen Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
 
__NOTOC__
 
__NOTOC__
==Leere Seite==
 
 
{|
 
{|
|height="800x"|
+
|height="950px"|
 +
|}
 +
==Aufgaben zum elektrischen Energietransport==
 +
====2) Wasserkreislauf und Erbsentransport als Modell====
 +
 
 +
Ergänze in der Tabelle die fehlenden Vergleiche.
 +
 
 +
{|class="wikitable"
 +
!valign="top"; style="border-style: solid; border-width: 4px "|
 +
elektrischer Stromkreis
 +
 
 +
!style="border-style: solid; border-width: 4px "|
 +
Wasserstromkreis
 +
 
 +
!style="border-style: solid; border-width: 4px "|
 +
Personenstromkreis
 +
 
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
[[Datei:Schaltplan Stromkreis Lämpchen an Spannungsquelle lang.png|200px]]
 +
 
 +
|style="border-style: solid; border-width: 4px "|
 +
[[Datei:Schaltplan Wasserstromkreis Pumpe Rädchen lang.png|200px]]
 +
 
 +
|style="border-style: solid; border-width: 4px "|
 +
[[Datei:Energiestromstärke Leistung Versuch Erbsenstromstärke.png|200px]]
 +
 
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
 
 +
|style="border-style: solid; border-width: 4px "|
 +
 
 +
|style="border-style: solid; border-width: 4px "|
 +
Der Personenstromkreis transportiert Erbsen von der Ausgabestelle zur Sammelstelle.
 +
 
 +
|-
 +
|valign="top"; style="border-style: solid; border-width: 4px "|
 +
 
 +
|style=" border-style: solid; border-width: 4px "|
 +
 
 +
|style="border-style: solid; border-width: 4px "|
 +
Die Personen laufen im Kreis, niemand geht verloren.
 +
 
 +
|-
 +
|valign="top"; style="border-style: solid; border-width: 4px "|
 +
Das elektrische Potential gibt an, wieviel Energie pro Ladung transportiert wird.
 +
 
 +
|style="border-style: solid; border-width: 4px "|
 +
 
 +
|style="border-style: solid; border-width: 4px "|
 +
 
 +
|-
 +
|valign="top"; style="border-style: solid; border-width: 4px "|
 +
 
 +
|style="border-style: solid; border-width: 4px "|
 +
Die Pumpe erzeugt am Ausgang einen hohen Druck und am Eingang einen geringen Druck.
 +
 
 +
|style="border-style: solid; border-width: 4px "|
 +
 
 +
|-
 +
|valign="top"; style="border-style: solid; border-width: 4px "|
 +
 
 +
|style="border-style: solid; border-width: 4px "|
 +
Der Druckunterschied treibt den Wasserstrom an. Das Wasser fließt vom hohen Druck zum niedrigen Druck.
 +
 
 +
|style="border-style: solid; border-width: 4px "|
 +
 
 +
|-
 +
|valign="top"; style="border-style: solid; border-width: 4px "|
 +
 
 +
|style="border-style: solid; border-width: 4px "|
 +
 
 +
|style="border-style: solid; border-width: 4px "|
 +
Bei einer Verzweigung behalten alle die Erbsen in der Hand.
 +
|-
 +
|valign="top"; style="border-style: solid; border-width: 4px "|
 +
Bei einem Lämpchen (oder einem anderem Widerstand) kann das Potential abfallen.
 +
 
 +
|style="border-style: solid; border-width: 4px "|
 +
 
 +
|style="border-style: solid; border-width: 4px "|
  
 
|}
 
|}
__NOTOC__
 
  
==Aufgaben zur Impulsmenge und zum 2. Newtonschen Gesetz==
+
====1) Energiehunger====
====1) Impulsmengen berechnen====
+
Alle Lebewesen und alle Maschinen brauchen Energie.  
[[Datei:Möve_fliegend.jpg|thumb|140px]]
+
Berechne jeweils die Impulsmenge:
+
:a) Ein Vogel mit der Masse 100 g fliegt mit 36 km/h.
+
:b) Ein Fußgänger (m=72 kg) läuft mit 5 km/h.
+
:c) Ein Auto (m=1 t) fährt mit 36 km/h.
+
  
====2) Bewegungsmenge im Wasserbehältermodell====
+
Ein Mensch braucht ohne jede körperliche Anstrengung etwa 7 MegaJoule Energie am Tag. Das nennt man auch den "Grundumsatz". Bei leichter Anstrengung etwa 10-13 MegaJoule pro Tag. Die genaue Energiemenge hängt vom Körpergewicht, vom Geschlecht und weiteren Faktoren ab.
Anke und ihr Papa fahren zusammen Rad. Anke wiegt 40 kg, ihr Vater 90 kg, jedes ihrer Räder 10kg. Sie fahren mit 18 km/h nebeneinander.
+
<br>Körperlich schwer arbeitende Menschen brauchen bis zu 20 MegaJoule pro Tag und Leistungssportler an einzelnen Tagen bis zu 50 MegaJoule Energie pro Tag!
:a) Wieviel Impuls steckt in Anna, in ihrem Vater und wieviel in den beiden Rädern?
+
:Stelle dies mit dem Wasserbehältermodell dar.
+
:b) Wie schnell muss Anke fahren, um genausoviel Impuls wie ihr Vater zu haben? (mit Rädern)
+
:Stelle auch dies im Wasserbehältermodell dar.
+
  
====3) Ball und Gewehrkugel====
+
Mit diesem "[https://projekte.uni-hohenheim.de/wwwin140/info/interaktives/energiebed.htm Energiebedarfsrechner]" der Uni Hohenheim kannst du dir deinen persönlichen Energiebedarf berechnen.
Ein Tennisball (m=57g) kann bei einer Geschwindigkeit von 5 km/h einen Holzklotz umschmeißen.
+
:Wie schnell muß dazu eine Luftgewehrkugel sein, wenn sie nur 0,541 g Masse hat?
+
  
 +
*Berechne den Energiebedarf des Menschen in Joule pro Sekunde (Watt) und vergleiche mit diesen Maschinen:
 +
#Laptop: 30 Watt
 +
#Desktop: 120 Watt
 +
#Auto: 83 KiloWatt<ref>Das entspricht einem Verbrauch von 8 Litern Benzin pro 100 km bei einer Geschwindigkeit von 130 km/h. Damit ist nicht die Leistung gemeint, die zum Antrieb des Autos genutzt wird, sondern die zum Betrieb des Motors benötigt wird. Von der Energie des Benzins werden nur ca. 25% zum Antrieb genutzt, der Rest geht vor allem mit der Abwärme verloren.</ref>
  
====4) Das Wasserbehältermodell I====
 
*In der Tabelle ist außer der ersten Spalte einiges durcheinandergeraten. Sortiere es wieder richtig. 
 
  
{|class="wikitable"  
+
 
!Bewegung
+
 
!Wasserbehälter
+
 
 +
====3) Erbsen- und Energietransport====
 +
Der "[[Elektrischer_Energietransport:_Beladungsmaß_und_Leistung#Versuch:_Kichererbsentransport|Erbsentransport]]" ist ein Modell für den Transport von Energie durch den elektrischen Stromkreis. In jeder Zeile steht das Ergebnis einer Messung.
 +
 
 +
Ergänze die fehlenden Werte.
 +
 
 +
{|class="wikitable" style="text-align: center"
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Erbsen-<br>beladung
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Zeit-<br>spanne
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Personen-<br>anzahl
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Erbsen-<br>anzahl
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Personen-<br>stromstärke
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Erbsen-<br>stromstärke
 
|-
 
|-
|| Impulsmenge || Grundfläche 
+
|style="border-style: solid; border-width: 4px "|  
 +
<math>3\,\rm \frac{E}{P}</math>
 +
|style="border-style: solid; border-width: 4px "|  
 +
<math>10\,\rm s</math>
 +
|style="border-style: solid; border-width: 4px "|
 +
<math>5\,\rm P</math>
 +
|style="border-style: solid; border-width: 4px "|
 +
 
 +
|style="border-style: solid; border-width: 4px "|
 +
 
 +
|style="border-style: solid; border-width: 4px "|
 +
 
 
|-
 
|-
|| Masse || Wassermenge 
+
|style="border-style: solid; border-width: 4px "|  
 +
<math>6\,\rm \frac{E}{P}</math>
 +
|style="border-style: solid; border-width: 4px "|  
 +
<math>20\,\rm s</math>
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
<math>0{,5}\,\rm \frac{P}{s}</math>
 +
|style="border-style: solid; border-width: 4px "|
 +
 
 
|-
 
|-
|| Geschwindigkeit  || Abflussrate
+
|style="border-style: solid; border-width: 4px "|  
 +
 
 +
|style="border-style: solid; border-width: 4px "|  
 +
<math>60\,\rm s</math>
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
<math>2\,\rm \frac{P}{s}</math>
 +
|style="border-style: solid; border-width: 4px "|
 +
<math>8\,\rm \frac{E}{s}</math>
 +
|}
 +
 
 +
 
 +
 
 +
 
 +
Bei einem [[Elektrischer_Energietransport:_Beladungsmaß_und_Leistung#Das_Potential_als_Energiebeladungsmaß_und_die_elektrische_Leistung|elektrischen Stromkreis]] hat man den Energietransport untersucht, indem die Stromstärke, die Energiestromstärke (Leistung) oder die Spannung (der Potentialunterschied) gemessen wurde. In jeder Zeile steht das Ergebnis einer Messung.
 +
 
 +
Ergänze die fehlenden Werte.
 +
 
 +
{|class="wikitable" style="text-align: center"
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Energie-<br>beladung<br>(Spannung)
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Zeit-<br>spanne
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Ladungs-<br>menge
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Energie-<br>menge
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
elektrische-<br>Stromstärke
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Energie-<br>stromstärke<br>(Leistung)
 
|-
 
|-
|| Kraft  || Zuflussrate
+
|style="border-style: solid; border-width: 4px "|  
 +
<math>3\,\rm \frac{J}{C} = 3\,\rm V</math>
 +
|style="border-style: solid; border-width: 4px "|  
 +
<math>10\,\rm s</math>
 +
|style="border-style: solid; border-width: 4px "|
 +
<math>5\,\rm C</math>
 +
|style="border-style: solid; border-width: 4px "|
 +
 
 +
|style="border-style: solid; border-width: 4px "|
 +
 
 +
|style="border-style: solid; border-width: 4px "|
 +
 
 
|-
 
|-
|| Reibungskraft  || Wasserhöhe
+
|style="border-style: solid; border-width: 4px "|  
 +
<math>6\,\rm \frac{J}{C} = 6\,\rm V</math>
 +
|style="border-style: solid; border-width: 4px "|  
 +
<math>20\,\rm s</math>
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
<math>0{,}5\,\rm \frac{C}{s} = 0{,}5\,\rm A</math>
 +
|style="border-style: solid; border-width: 4px "|
 +
 
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
 
 +
|style="border-style: solid; border-width: 4px "|
 +
<math>60\,\rm s</math>
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
<math>2\,\rm \frac{C}{s} = 2\,\rm A</math>
 +
|style="border-style: solid; border-width: 4px "|
 +
<math>8\,\rm \frac{J}{s} = 8\,\rm W</math>
 
|}
 
|}
  
====5) Jemanden anschieben====
+
====4) Die Leistung einer Lampe====
Moritz wird von Karla wird auf einem Bürodrehstuhl angeschoben. Seine (träge) Masse beträgt 70kg und die des Stuhls 10kg. Dabei wird er 2 m/sec schnell.
+
[[Datei:Aufgaben PUI einfacher Stromkreis.png|300px|right]]
*Wieviel Impuls steckt in Moritz und wieviel im Stuhl?
+
Eine Lampe wird an eine Autobatterie angeschlossen. Mit einem Voltmeter bestimmt man den Potentialunterschied (Spannung) an der Batterie zu 12V. Das Ampèremeter zeigt eine Stromstärke von 2A an.
*Mit welcher mittleren Kraft schiebt Karla, wenn sie eine halbe (ganze) Sekunde lang geschoben hat?
+
<br>'''a)''' Kennzeichne die Potentialgebiete farbig und schreibe das Potential in Volt dazu. Dabei soll der Minuspol auf 0 Volt liegen. (Hinweis: An einem Ampèremeter wird fast keine Energie abgegeben, das Potential ändert sich nicht. Durch ein Voltmeter kann fast kein Strom fließen.)
 +
<br>'''b)''' Gib die Stromstärke durch die Batterie und durch die Lampe an.
 +
<br>'''c)''' Berechne die Leistung der Batterie und der Lampe, also wieviel Joule sie pro Sekunde umsetzen.
 +
<br>'''d)''' Man läßt die Lampe eine Stunde lang brennen. Berechne wieviel Coulomb Ladung durch die Lampe geflossen ist und wieviel Joule Energie an die Lampe abgegeben wurde.
 +
<br style="clear: both" />
  
====6) Roller fahren====
+
====5) Eine Lichterkette====
[[Datei:Tretroller.jpg|thumb|100px]]
+
[[Datei:Aufgaben PUI Lichterkette.png|450px|right]]
Tina steht mit ihrem Roller auf einer ebenen Straße. Zusammen haben sie eine Masse von 50kg. Dann schubst sie sich zweimal  von der Straße ab. Beim ersten Mal eine Sekunde lang mit einer Kraft von 100N, beim zweiten Mal eine halbe Sekunde lang mit einer Kraft von 60N. Dazwischen rollt sie für zwei Sekunden.
+
Diese Weihnachtsbaumbeleuchtung hat 10 Lampen und wird an die Steckdose angeschlossen. Parallel zur Steckdose ist ein Voltmeter eingebaut, es zeit eine Spannung von 230V an. In Reihe mit den Lampen ist noch ein Ampèremeter eingebaut, es zeigt eine Stromstärke von 200mA an.
*Wieviel Impuls hat Tina nach dem ersten und nach dem zweiten Anschubsen und wie schnell ist sie jeweils? (Rechne ohne Reibung, also ohne Impulsverlust.)
+
<br>'''a)''' Kennzeichne die Potentialgebiete farbig und schreibe das Potential in Volt dazu. Dabei soll der Minuspol auf 0 Volt liegen. (Hinweis: An einem Ampèremeter wird fast keine Energie abgegeben, das Potential ändert sich nicht. Durch ein Voltmeter kann fast kein Strom fließen.)
 +
<br>'''b)''' Gib die Stromstärke an den einzelnen Lampen an.
 +
<br>'''c)''' Berechne die Leistung einer einzelnen Lampe und aller Lampen zusammen.
 +
<br style="clear: both" />
  
Die gerade eben noch vernachlässigte Reibungskraft beträgt für Tina und ihren Roller konstant 10 Newton.
+
====6) Lampe und Wasserkocher an der Steckdose====
*Wie lange nach dem zweimaligen Anschubsen kann Tina noch rollen, bevor sie stehen bleibt?
+
[[Datei:Aufgaben PUI Lampe Wasserkocher parallel.png|300px|right]]
*Wie könnte sie sich in regelmäßigen Abständen vom Boden abstoßen, um mit gleichbleibender Geschwindigkeit zu fahren?
+
[[Datei:Phasenprüfer Spannungsprüfer Steckdose.jpg|200px|right|Mit einem "Phasenprüfer" kann man den Anschluss finden, der auf dem Potential von 230V liegt. Der andere Anschluss ist der Nulleiter, er liegt auf Null Volt.]]
 +
An eine Mehrfachsteckdose wird eine Lampe und ein Wasserkocher angeschlossen. Die Lampe hat eine Leistung von 10 Watt, der Wasserkocher von 1000 Watt, also ein Kilowatt.
 +
<br>'''a)''' Berechne wieviel Joule Energie die Lampe und der Wasserkocher in einer Stunde benötigen.
 +
<br>'''b)''' Kennzeichne die Potentialgebiete farbig und schreibe das Potential in Volt dazu. Dabei soll der untere Anschluss auf Null Volt liegen, man nennt ihn auch den Nulleiter. Der obere Anschluss liegt auf 230V, man nennt ihn auch "die Phase".<ref>An der Steckdose liegt genau genommen eine Wechselspannung an. Das Potential an der Phase schwankt zwischen +325V und -325V. Im Mittel ergibt ein Potential von konstant 230V die gleiche Leistung.</ref>
 +
<br>'''c)''' Berechne die Stromstärke durch die Lampe und durch den Wasserkocher. Gib an welche Stromstärke die Ampèremeter anzeigen.
 +
<br style="clear: both" />
  
====7) Das Wasserbehältermodell II====
+
====7) Parallelschaltung von Lämpchen====
Beschreibe jeweils die Situationen oder Abläufe, indem du passende Wasserbehältermodelle mit dem richtigen Zu- und Abfluß zeichnest.
+
[[Datei:Aufgaben PUI ein und zwei Lämpchen parallel.png|350px|right]]
 +
Eine Lampe wird parallel zu zwei in Reihe geschalteten Lampen an eine Autobatterie angeschlossen. Mit einem Voltmeter bestimmt man den Potentialunterschied (Spannung) an der Batterie zu 12V. Die Ampèremeter zeigen eine Stromstärke von 200mA und 100mA an.
 +
<br>'''a)''' Kennzeichne die Potentialgebiete farbig und schreibe das Potential in Volt dazu. Dabei soll der Minuspol auf 0 Volt liegen. (Kannst du nun erklären, warum durch die einzelne Lampe mehr Strom fließt?)
 +
<br>'''b)''' Gib die Stromstärke an allen Lampen und durch die Batterie an.
 +
<br>'''c)''' Berechne die Leistung der drei Lampen und der Batterie.
 +
<br style="clear: both" />
  
*Paul und Pauline fahren Skatebord
+
====8) Reihen- und Parallelschaltung von Lämpchen====
:Paul und Pauline stehen mit ihrem Skateboard auf der Straße. Beide stoßen sich für eine halbe Sekunde mit einer Kraft von 80 Newton vom Boden ab. Paul hat aber doppelt so viel Masse wie Pauline.
+
[[Datei:Aufgaben PUI ein und zwei Lämpchen in Reihe.png|350px|right]]
 +
Eine Lampe wird in Reihe zu zwei parallel geschalteten, identischen Lampen an eine Autobatterie angeschlossen. Mit zwei Voltmetern bestimmt man den Potentialunterschied (Spannung) an der Batterie zu 12V und an der einzelnen Lampe zu 8V. Das Ampèremeter zeigt eine Stromstärke von 250mA an.
 +
<br>'''a)''' Kennzeichne die Potentialgebiete farbig und schreibe das Potential in Volt dazu. Dabei soll der Minuspol auf 0 Volt liegen.
 +
<br>'''b)''' Gib die Stromstärke an allen Lampen und durch die Batterie an.
 +
<br>'''c)''' Berechne die Leistung der drei Lampen und der Batterie.
 +
<br style="clear: both" />
  
*Pauline und Antonia fahren zusammen Fahrrad
+
====9) Die Stromrechnung====
:Beide haben in etwa die gleiche Masse und sind auch gleichschnell. Vor der Ampel kommt Pauline innerhalb von drei Sekunden zum Stehen. Antonia dagegen kann mit ihren besseren Bremsen sogar in anderthalb Sekunden anhalten.
+
[[Datei:Stromrechnung_Ausschnitt.jpg|thumb|Ausschnitt einer Stromrechnung.]]
 +
Das Elektrizitätswerk liefert Energie mit dem elektrischen Strom nach Hause. Dafür läßt sich der Betreiber natürlich bezahlen.
  
*Pauline fährt Rad
+
Eine Lampe hat eine Leistung von 11 Watt.
:Zuerst steht sie an der Ampel. Dann tritt sie mit einer gleichbleibenden Kraft in die Pedale, bis sie schließlich mit konstanter Geschwindigkeit fährt. Nach einer Weile hört sie auf zu treten und läßt es gemütlich ausrollen.
+
:'''a)''' Wieviel Energie benötigt sie in der Sekunde, in der Minute und in einer Stunde?
  
====8) Widerstände beim Radfahren====
+
In der Stromrechnung wird die Energiemenge nicht in Joule, sondern in "KiloWattStunden" (kWh) angegeben. Mit einer KiloWattStunde Energie kann man ein elektrisches Gerät mit einer Leistung von 1000 Watt eine Stunde lang betreiben.
[[Datei:Fahrrad_Widerstandsdiagramm.png|thumb|250px]]
+
:'''b)''' Wieviel Joule entspricht einer KiloWattStunde?
In diesem Widerstandsdiagramm ist die Reibungskraft F über die Geschwindigkeit aufgetragen. Die Reibungskraft setzt sich aus dem geschwindigkeitsunabhängigen Rollwiderstand und der Luftreibung zusammen.
+
Die für ein Gerät benötigte Energie in KiloWattStunden kann man ganz einfach ausrechnen. Wenn man zum Beispiel ein Staubsauger mit einer Leistung von 1200 Watt 30 Minuten lang betreiben will, rechnet man:
 +
:<math>\text{Energie} = \text{Leistung (in kW)} \cdot \text{Zeit (in h)}</math>
 +
:<math>\text{Energie} = 1{,}2\,\rm kW \cdot 0{,}5\,\rm h = 0{,}6\,\rm kWh</math>
 +
In dieser Tabelle hat Angela aufgeschrieben, welche Geräte sie am Tag wie lange benutzt. Ihr Elektrizitätswerk berechnet ihr 27 Cent pro KiloWattStunde. Berechne für sie ihren jährlichen Energiebedarf und die Kosten.
 +
{|class="wikitable" style="text-align: center"
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Gerät
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Leistung
 +
!width="16%" style="border-style: solid; border-width: 4px "|  
 +
Zeitdauer
 +
!width="16%" style="border-style: solid; border-width: 4px "|  
 +
Energiemenge (in kWh)
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Kosten (in €)
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
Waschmaschine<br>([https://www.stromverbrauchinfo.de/stromverbrauch-waschmaschinen.php Genaue Werte hier!])
 +
|style="border-style: solid; border-width: 4px "|
 +
1000 W
 +
|style="border-style: solid; border-width: 4px "|
 +
1 h
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
Elektroherd
 +
|style="border-style: solid; border-width: 4px "|
 +
2500 W
 +
|style="border-style: solid; border-width: 4px "|
 +
1 h
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
Föhn
 +
|style="border-style: solid; border-width: 4px "|
 +
1500 W
 +
|style="border-style: solid; border-width: 4px "|
 +
15 min
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
Radio
 +
|style="border-style: solid; border-width: 4px "|
 +
10 W
 +
|style="border-style: solid; border-width: 4px "|
 +
2 h
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
Computer
 +
|style="border-style: solid; border-width: 4px "|
 +
80 W
 +
|style="border-style: solid; border-width: 4px "|
 +
3 h
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
Einige Lampen
 +
|style="border-style: solid; border-width: 4px "|
 +
40 W
 +
|style="border-style: solid; border-width: 4px "|
 +
3 h
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
Fernseher
 +
|style="border-style: solid; border-width: 4px "|
 +
80 W
 +
|style="border-style: solid; border-width: 4px "|
 +
2 h
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|}
  
Paula fährt auf ebener Strecke mit einer konstanten Geschwindigkeit von 6 m/s.
+
====10) Lampen im Auto und zu Hause====
*Wie groß ist jetzt die Reibungskraft und wie groß die antreibende Kraft?
+
LED-Lampen haben zu Hause und in Automobilen Einzug gehalten. Ein 12-Watt-LED-Autoscheinwerfer ist genauso hell wie eine 12-Watt-LED-Lampe zu Hause. Die Elektrik im Auto wird mit einer Spannung von 12 Volt angetrieben, zu Hause beträgt die Netzspannung 230 Volt.
Danach tritt Paula so in die Pedale, dass die antreibende Kraft auf 40N ansteigt.  
+
:Vergleiche die Stromstärken der beiden Lampen.
*Wie schnell wird sie jetzt?
+
  
====9) Die Weltraumwaage SLAMMD====
+
====11) Sicherungen====
Das "Space Linear Acceleration Mass Measurement Device", kurz SLAMMD bestimmt auf der ISS (International Space Station) die Masse von AstronautInnen durch eine lineare Beschleunigung. ([http://www.youtube.com/watch?v=qE4OoE93fX0 Demovideo])
+
[[Datei:Sicherungskasten.jpg|thumb|120px|Sicherungskasten einer Wohnung]]
 +
In Wohnungen ist jeder Raum über eine Sicherung an das Stromnetz angeschlossen. Die maximale Stromstärke beträgt häufig 16 Ampère.
 +
:'''a)''' Welche dieser Geräte kann man ''gleichzeitig'' in der Küche betreiben?
 +
:# Wasserkocher 2000W
 +
:# Staubsauger 2400W
 +
:# Radio 20W
 +
:# Lampe 10W
 +
:# Mixer 1600W
 +
[[Datei:Sicherungskasten_Kfz.jpg|thumb|120px||Sicherungskasten eines Autos. Die Sicherungen sind mit der maximalen Stromstärke in Ampère beschriftet.]]
 +
Auch in Autos sind Sicherungen verbaut, um die Kabel vor Überhitzung zu schützen. Anders als in der Wohnung sind dies einfache Schmelzsicherungen, die bei zu großer Stromstärke einfach durchschmelzen und dann ersetzt werden müssen.
  
Bei einer Messung wurde die Person durch eine Kraft von 50 Newton in 1,2 Sekunden auf eine Geschwindigkeit von 0,8 Meter pro Sekunde beschleunigt.
+
Beim Starten wird der Verbrennungsmotor von einem Elektromotor, dem "Anlasser", gedreht. Der Anlasser hat eine Leistung zwischen einem und zwei KiloWatt und bekommt seine Energie aus der Auto-Batterie, die eine Spannung von 12 Volt hat.
 +
:'''b)''' Der Anlasser ist ohne Sicherung direkt an die Batterie angeschlossen. Warum wohl?
  
*Wie groß ist deren (träge) Masse?
+
====12) Batterien und Akkus als Energiespeicher====
 +
[[Datei:Auto-Starterbatterie.jpg|thumb|Ein Bleiakkumulator für's Auto ("Auto-Batterie")]]
 +
[[Datei:Handyakku_schräg.jpg|thumb|Ein Lithium-Ionen-Akku für's Handy.]]
 +
Aus Versehen läßt Peter das Licht über Nacht an seinem geparkten Auto an.
  
====10) Der Anschnallgurt====
+
:'''a)''' Warum kann das zu einem Problem werden?
Der Gurt verhindert bei einem Autounfall stärkere Verletzungen.
+
An Peters Auto sind zwei Frontscheinwerfer mit je 36 Watt und zwei Rücklichter mit je 18 Watt.
 +
:'''b)''' Wieviel Strom fließt durch die Lampen und wieviel durch die Batterie?
 +
Die Frage ist nun, ob am nächsten Morgen die Batterie "leer" ist, also keine Energie mehr enthält.
  
Wie groß sind wohl die Kräfte auf den Kopf der FahrerIn bei einem Aufprall mit 50 km/h auf ein festes Hindernis mit und ohne Gurt?
+
Auf Batterien ist angegeben "wie groß" sie sind. Bei Peters Autobatterie findet sich zum Beispiel die Aufschrift 12V/36Ah. Das bedeutet, dass die Batterie 36 Stunden lang einen Strom der Stärke 1 Ampère antreiben kann. Oder 18 Stunden lang einen Strom der Stärke 2 Ampère:
 +
:<math>36\,\rm Ah = 36\,\rm h \cdot 1\,\rm A = 18\,\rm h \cdot 2\,\rm A</math>
  
Mit Hilfe dieses [http://www.youtube.com/watch?v=QiEtaTROW_4&feature=related Videos vom TCS] wurde die Zeitdauer des Abremsens des Kopfes mit und ohne Gurt abgeschätzt. In den Zeitlupenaufnahmen wurden ca. 500 Bilder pro Sekunde aufgenommen, also alle 2 msec ein Bild gemacht.
+
:'''c)''' Wie lange kann man mit dieser Batterie die beiden Scheinwerfer und die Rückleuchten gleichzeitig betreiben?
 +
:'''d)''' Wieviel Coulomb Ladung hat die Batterie dabei verschoben?
 +
:'''e)''' Berechne wieviel Energie die Batterie dabei der Lampe geliefert hat. (In Wattstunden und in Joule.)
  
:Abremsen durch Aufprall auf Frontscheibe und Lenkrad: ca. 6 msec
+
Auf Batterien und Akkus findet man außer der Betriebsspannung auch die Angabe der sogenannten "Kapazität". Diese gibt an, wieviel Ladung die Batterie verschieben kann:
:Abremsen durch den Gurt: ca. 44 msec
+
{|
 +
|1)Smartphone:
 +
|3,7V / 1300mAh
 +
|-
 +
|2) Laptop:  
 +
|10,95V / 7100mAh
 +
|-
 +
|3) Bohrschrauber:
 +
|12V / 1200mAh
 +
|-
 +
|4) AA-Mignon:
 +
|1,2V / 2000mAh
 +
|-
 +
|5) älteres Motorrad:
 +
|6V / 4Ah
 +
|}
 +
:'''g)''' Berechne, wieviel Ladung die Batterien anschieben können (in Coulomb) und wieviel Energie dabei transportiert wird (in Wattstunden und Joule).
 +
Ein Liter Benzin enthält ca. 30 MegaJoule Energie und in den Tank eines Autos passen ca. 50 Liter.
 +
:'''h)''' Wieviele Laptop-Akkus können den vollen Benzintank ersetzen?
  
Ein menschlicher Kopf hat eine Masse von ca. 3-4kg ([http://hypertextbook.com/facts/2006/DmitriyGekhman.shtml], [http://www.smf.org/docs/articles/pdf/chingtechbrief.pdf]).
+
====13) Teure und billige Energie====
 +
Energie kann man mit ganz verschiedenen Energieträgern kaufen. Die Heizung zum Beispiel kann man mit Heizöl, Gas, Holz-Pellets, elektrisch oder mit Fernwärme betreiben. Das Auto bekommt die Energie mit Benzin und eine Taschenlampe mit einer Batterie. Mit welchem Energieträger ist die Energie denn am billigsten?
 +
{|class="wikitable" style="text-align: center"
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Energieträger
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Trägermenge
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Kosten pro Träger
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Energiebeladung<br>(Heizwert)
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Kosten pro Energie<br>(in Cent/MJ)
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Kosten pro Energie<br>(in Cent/kWh)
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
Benzin
 +
|style="border-style: solid; border-width: 4px "|
 +
1 Liter
 +
|style="border-style: solid; border-width: 4px "|
 +
1,30 €
 +
|style="border-style: solid; border-width: 4px "|
 +
30 MJ/l
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
Heizöl
 +
|style="border-style: solid; border-width: 4px "|
 +
1 Liter
 +
|style="border-style: solid; border-width: 4px "|
 +
0,50 €
 +
|style="border-style: solid; border-width: 4px "|
 +
35 MJ/l
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "| 
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
Erdgas<br>(Haushalt)
 +
|style="border-style: solid; border-width: 4px "|
 +
1 <math>m^3</math>
 +
|style="border-style: solid; border-width: 4px "|
 +
0,66 €
 +
|style="border-style: solid; border-width: 4px "|
 +
40 <math>\rm MJ/m^3</math>
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
Holz-Pellets
 +
|style="border-style: solid; border-width: 4px "|
 +
1000 kg
 +
|style="border-style: solid; border-width: 4px "|
 +
230 €
 +
|style="border-style: solid; border-width: 4px "|
 +
14 MJ/kg
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "| 
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
"Strom"
 +
|style="border-style: solid; border-width: 4px "|
 +
100.000 Coulomb
 +
|style="border-style: solid; border-width: 4px "|
 +
1,73 €
 +
|style="border-style: solid; border-width: 4px "|
 +
230 J/C
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "| 
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
Batterie
 +
|style="border-style: solid; border-width: 4px "|
 +
AA-Mignon 2300mAh
 +
|style="border-style: solid; border-width: 4px "|
 +
0,50 €
 +
|style="border-style: solid; border-width: 4px "|
 +
1,5 V
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|}
  
*Berechne die wirkenden Kräfte beim Abbremsen und vergleiche sie mit der Gewichtskraft des Kopfes.
+
==Fußnoten==
 +
<references />

Aktuelle Version vom 6. Mai 2025, 23:46 Uhr

Aufgaben zum elektrischen Energietransport

2) Wasserkreislauf und Erbsentransport als Modell

Ergänze in der Tabelle die fehlenden Vergleiche.

elektrischer Stromkreis

Wasserstromkreis

Personenstromkreis

Schaltplan Stromkreis Lämpchen an Spannungsquelle lang.png

Schaltplan Wasserstromkreis Pumpe Rädchen lang.png

Energiestromstärke Leistung Versuch Erbsenstromstärke.png

Der Personenstromkreis transportiert Erbsen von der Ausgabestelle zur Sammelstelle.

Die Personen laufen im Kreis, niemand geht verloren.

Das elektrische Potential gibt an, wieviel Energie pro Ladung transportiert wird.

Die Pumpe erzeugt am Ausgang einen hohen Druck und am Eingang einen geringen Druck.

Der Druckunterschied treibt den Wasserstrom an. Das Wasser fließt vom hohen Druck zum niedrigen Druck.

Bei einer Verzweigung behalten alle die Erbsen in der Hand.

Bei einem Lämpchen (oder einem anderem Widerstand) kann das Potential abfallen.

1) Energiehunger

Alle Lebewesen und alle Maschinen brauchen Energie.

Ein Mensch braucht ohne jede körperliche Anstrengung etwa 7 MegaJoule Energie am Tag. Das nennt man auch den "Grundumsatz". Bei leichter Anstrengung etwa 10-13 MegaJoule pro Tag. Die genaue Energiemenge hängt vom Körpergewicht, vom Geschlecht und weiteren Faktoren ab.
Körperlich schwer arbeitende Menschen brauchen bis zu 20 MegaJoule pro Tag und Leistungssportler an einzelnen Tagen bis zu 50 MegaJoule Energie pro Tag!

Mit diesem "Energiebedarfsrechner" der Uni Hohenheim kannst du dir deinen persönlichen Energiebedarf berechnen.

  • Berechne den Energiebedarf des Menschen in Joule pro Sekunde (Watt) und vergleiche mit diesen Maschinen:
  1. Laptop: 30 Watt
  2. Desktop: 120 Watt
  3. Auto: 83 KiloWatt[1]



3) Erbsen- und Energietransport

Der "Erbsentransport" ist ein Modell für den Transport von Energie durch den elektrischen Stromkreis. In jeder Zeile steht das Ergebnis einer Messung.

Ergänze die fehlenden Werte.

Erbsen-
beladung

Zeit-
spanne

Personen-
anzahl

Erbsen-
anzahl

Personen-
stromstärke

Erbsen-
stromstärke

3EP

10s

5P

6EP

20s

0,5Ps

60s

2Ps

8Es



Bei einem elektrischen Stromkreis hat man den Energietransport untersucht, indem die Stromstärke, die Energiestromstärke (Leistung) oder die Spannung (der Potentialunterschied) gemessen wurde. In jeder Zeile steht das Ergebnis einer Messung.

Ergänze die fehlenden Werte.

Energie-
beladung
(Spannung)

Zeit-
spanne

Ladungs-
menge

Energie-
menge

elektrische-
Stromstärke

Energie-
stromstärke
(Leistung)

3JC=3V

10s

5C

6JC=6V

20s

0,5Cs=0,5A

60s

2Cs=2A

8Js=8W

4) Die Leistung einer Lampe

Aufgaben PUI einfacher Stromkreis.png

Eine Lampe wird an eine Autobatterie angeschlossen. Mit einem Voltmeter bestimmt man den Potentialunterschied (Spannung) an der Batterie zu 12V. Das Ampèremeter zeigt eine Stromstärke von 2A an.
a) Kennzeichne die Potentialgebiete farbig und schreibe das Potential in Volt dazu. Dabei soll der Minuspol auf 0 Volt liegen. (Hinweis: An einem Ampèremeter wird fast keine Energie abgegeben, das Potential ändert sich nicht. Durch ein Voltmeter kann fast kein Strom fließen.)
b) Gib die Stromstärke durch die Batterie und durch die Lampe an.
c) Berechne die Leistung der Batterie und der Lampe, also wieviel Joule sie pro Sekunde umsetzen.
d) Man läßt die Lampe eine Stunde lang brennen. Berechne wieviel Coulomb Ladung durch die Lampe geflossen ist und wieviel Joule Energie an die Lampe abgegeben wurde.

5) Eine Lichterkette

Aufgaben PUI Lichterkette.png

Diese Weihnachtsbaumbeleuchtung hat 10 Lampen und wird an die Steckdose angeschlossen. Parallel zur Steckdose ist ein Voltmeter eingebaut, es zeit eine Spannung von 230V an. In Reihe mit den Lampen ist noch ein Ampèremeter eingebaut, es zeigt eine Stromstärke von 200mA an.
a) Kennzeichne die Potentialgebiete farbig und schreibe das Potential in Volt dazu. Dabei soll der Minuspol auf 0 Volt liegen. (Hinweis: An einem Ampèremeter wird fast keine Energie abgegeben, das Potential ändert sich nicht. Durch ein Voltmeter kann fast kein Strom fließen.)
b) Gib die Stromstärke an den einzelnen Lampen an.
c) Berechne die Leistung einer einzelnen Lampe und aller Lampen zusammen.

6) Lampe und Wasserkocher an der Steckdose

Aufgaben PUI Lampe Wasserkocher parallel.png
Mit einem "Phasenprüfer" kann man den Anschluss finden, der auf dem Potential von 230V liegt. Der andere Anschluss ist der Nulleiter, er liegt auf Null Volt.

An eine Mehrfachsteckdose wird eine Lampe und ein Wasserkocher angeschlossen. Die Lampe hat eine Leistung von 10 Watt, der Wasserkocher von 1000 Watt, also ein Kilowatt.
a) Berechne wieviel Joule Energie die Lampe und der Wasserkocher in einer Stunde benötigen.
b) Kennzeichne die Potentialgebiete farbig und schreibe das Potential in Volt dazu. Dabei soll der untere Anschluss auf Null Volt liegen, man nennt ihn auch den Nulleiter. Der obere Anschluss liegt auf 230V, man nennt ihn auch "die Phase".[2]
c) Berechne die Stromstärke durch die Lampe und durch den Wasserkocher. Gib an welche Stromstärke die Ampèremeter anzeigen.

7) Parallelschaltung von Lämpchen

Aufgaben PUI ein und zwei Lämpchen parallel.png

Eine Lampe wird parallel zu zwei in Reihe geschalteten Lampen an eine Autobatterie angeschlossen. Mit einem Voltmeter bestimmt man den Potentialunterschied (Spannung) an der Batterie zu 12V. Die Ampèremeter zeigen eine Stromstärke von 200mA und 100mA an.
a) Kennzeichne die Potentialgebiete farbig und schreibe das Potential in Volt dazu. Dabei soll der Minuspol auf 0 Volt liegen. (Kannst du nun erklären, warum durch die einzelne Lampe mehr Strom fließt?)
b) Gib die Stromstärke an allen Lampen und durch die Batterie an.
c) Berechne die Leistung der drei Lampen und der Batterie.

8) Reihen- und Parallelschaltung von Lämpchen

Aufgaben PUI ein und zwei Lämpchen in Reihe.png

Eine Lampe wird in Reihe zu zwei parallel geschalteten, identischen Lampen an eine Autobatterie angeschlossen. Mit zwei Voltmetern bestimmt man den Potentialunterschied (Spannung) an der Batterie zu 12V und an der einzelnen Lampe zu 8V. Das Ampèremeter zeigt eine Stromstärke von 250mA an.
a) Kennzeichne die Potentialgebiete farbig und schreibe das Potential in Volt dazu. Dabei soll der Minuspol auf 0 Volt liegen.
b) Gib die Stromstärke an allen Lampen und durch die Batterie an.
c) Berechne die Leistung der drei Lampen und der Batterie.

9) Die Stromrechnung

Ausschnitt einer Stromrechnung.

Das Elektrizitätswerk liefert Energie mit dem elektrischen Strom nach Hause. Dafür läßt sich der Betreiber natürlich bezahlen.

Eine Lampe hat eine Leistung von 11 Watt.

a) Wieviel Energie benötigt sie in der Sekunde, in der Minute und in einer Stunde?

In der Stromrechnung wird die Energiemenge nicht in Joule, sondern in "KiloWattStunden" (kWh) angegeben. Mit einer KiloWattStunde Energie kann man ein elektrisches Gerät mit einer Leistung von 1000 Watt eine Stunde lang betreiben.

b) Wieviel Joule entspricht einer KiloWattStunde?

Die für ein Gerät benötigte Energie in KiloWattStunden kann man ganz einfach ausrechnen. Wenn man zum Beispiel ein Staubsauger mit einer Leistung von 1200 Watt 30 Minuten lang betreiben will, rechnet man:

Energie=Leistung (in kW)Zeit (in h)
Energie=1,2kW0,5h=0,6kWh

In dieser Tabelle hat Angela aufgeschrieben, welche Geräte sie am Tag wie lange benutzt. Ihr Elektrizitätswerk berechnet ihr 27 Cent pro KiloWattStunde. Berechne für sie ihren jährlichen Energiebedarf und die Kosten.

Gerät

Leistung

Zeitdauer

Energiemenge (in kWh)

Kosten (in €)

Waschmaschine
(Genaue Werte hier!)

1000 W

1 h

Elektroherd

2500 W

1 h

Föhn

1500 W

15 min

Radio

10 W

2 h

Computer

80 W

3 h

Einige Lampen

40 W

3 h

Fernseher

80 W

2 h

10) Lampen im Auto und zu Hause

LED-Lampen haben zu Hause und in Automobilen Einzug gehalten. Ein 12-Watt-LED-Autoscheinwerfer ist genauso hell wie eine 12-Watt-LED-Lampe zu Hause. Die Elektrik im Auto wird mit einer Spannung von 12 Volt angetrieben, zu Hause beträgt die Netzspannung 230 Volt.

Vergleiche die Stromstärken der beiden Lampen.

11) Sicherungen

Sicherungskasten einer Wohnung

In Wohnungen ist jeder Raum über eine Sicherung an das Stromnetz angeschlossen. Die maximale Stromstärke beträgt häufig 16 Ampère.

a) Welche dieser Geräte kann man gleichzeitig in der Küche betreiben?
  1. Wasserkocher 2000W
  2. Staubsauger 2400W
  3. Radio 20W
  4. Lampe 10W
  5. Mixer 1600W
Sicherungskasten eines Autos. Die Sicherungen sind mit der maximalen Stromstärke in Ampère beschriftet.

Auch in Autos sind Sicherungen verbaut, um die Kabel vor Überhitzung zu schützen. Anders als in der Wohnung sind dies einfache Schmelzsicherungen, die bei zu großer Stromstärke einfach durchschmelzen und dann ersetzt werden müssen.

Beim Starten wird der Verbrennungsmotor von einem Elektromotor, dem "Anlasser", gedreht. Der Anlasser hat eine Leistung zwischen einem und zwei KiloWatt und bekommt seine Energie aus der Auto-Batterie, die eine Spannung von 12 Volt hat.

b) Der Anlasser ist ohne Sicherung direkt an die Batterie angeschlossen. Warum wohl?

12) Batterien und Akkus als Energiespeicher

Ein Bleiakkumulator für's Auto ("Auto-Batterie")
Ein Lithium-Ionen-Akku für's Handy.

Aus Versehen läßt Peter das Licht über Nacht an seinem geparkten Auto an.

a) Warum kann das zu einem Problem werden?

An Peters Auto sind zwei Frontscheinwerfer mit je 36 Watt und zwei Rücklichter mit je 18 Watt.

b) Wieviel Strom fließt durch die Lampen und wieviel durch die Batterie?

Die Frage ist nun, ob am nächsten Morgen die Batterie "leer" ist, also keine Energie mehr enthält.

Auf Batterien ist angegeben "wie groß" sie sind. Bei Peters Autobatterie findet sich zum Beispiel die Aufschrift 12V/36Ah. Das bedeutet, dass die Batterie 36 Stunden lang einen Strom der Stärke 1 Ampère antreiben kann. Oder 18 Stunden lang einen Strom der Stärke 2 Ampère:

36Ah=36h1A=18h2A
c) Wie lange kann man mit dieser Batterie die beiden Scheinwerfer und die Rückleuchten gleichzeitig betreiben?
d) Wieviel Coulomb Ladung hat die Batterie dabei verschoben?
e) Berechne wieviel Energie die Batterie dabei der Lampe geliefert hat. (In Wattstunden und in Joule.)

Auf Batterien und Akkus findet man außer der Betriebsspannung auch die Angabe der sogenannten "Kapazität". Diese gibt an, wieviel Ladung die Batterie verschieben kann:

1)Smartphone: 3,7V / 1300mAh
2) Laptop: 10,95V / 7100mAh
3) Bohrschrauber: 12V / 1200mAh
4) AA-Mignon: 1,2V / 2000mAh
5) älteres Motorrad: 6V / 4Ah
g) Berechne, wieviel Ladung die Batterien anschieben können (in Coulomb) und wieviel Energie dabei transportiert wird (in Wattstunden und Joule).

Ein Liter Benzin enthält ca. 30 MegaJoule Energie und in den Tank eines Autos passen ca. 50 Liter.

h) Wieviele Laptop-Akkus können den vollen Benzintank ersetzen?

13) Teure und billige Energie

Energie kann man mit ganz verschiedenen Energieträgern kaufen. Die Heizung zum Beispiel kann man mit Heizöl, Gas, Holz-Pellets, elektrisch oder mit Fernwärme betreiben. Das Auto bekommt die Energie mit Benzin und eine Taschenlampe mit einer Batterie. Mit welchem Energieträger ist die Energie denn am billigsten?

Energieträger

Trägermenge

Kosten pro Träger

Energiebeladung
(Heizwert)

Kosten pro Energie
(in Cent/MJ)

Kosten pro Energie
(in Cent/kWh)

Benzin

1 Liter

1,30 €

30 MJ/l

Heizöl

1 Liter

0,50 €

35 MJ/l

Erdgas
(Haushalt)

1 m3

0,66 €

40 MJ/m3

Holz-Pellets

1000 kg

230 €

14 MJ/kg

"Strom"

100.000 Coulomb

1,73 €

230 J/C

Batterie

AA-Mignon 2300mAh

0,50 €

1,5 V

Fußnoten

  1. Hochspringen Das entspricht einem Verbrauch von 8 Litern Benzin pro 100 km bei einer Geschwindigkeit von 130 km/h. Damit ist nicht die Leistung gemeint, die zum Antrieb des Autos genutzt wird, sondern die zum Betrieb des Motors benötigt wird. Von der Energie des Benzins werden nur ca. 25% zum Antrieb genutzt, der Rest geht vor allem mit der Abwärme verloren.
  2. Hochspringen An der Steckdose liegt genau genommen eine Wechselspannung an. Das Potential an der Phase schwankt zwischen +325V und -325V. Im Mittel ergibt ein Potential von konstant 230V die gleiche Leistung.