*: Unterschied zwischen den Versionen

Aus Schulphysikwiki
Wechseln zu: Navigation, Suche
 
(264 dazwischenliegende Versionen des gleichen Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
 
__NOTOC__
 
__NOTOC__
==Leere Seite==
 
 
{|
 
{|
|height="900x"|
+
|height="800px"|
|}__NOTOC__
+
|}
==Aufgaben zur Ladung als Quellenstärke und dem Fluss eines Feldes==
+
==Elektrischer Energietransport: Beladungsmaß und Leistung==
 +
====Versuch: Eine helle Lampe====
 +
;Aufbau
 +
[[Datei:Stromkreis_Versuch_zwei_Lampen_Potential_als_Energiebeladungsmaß.jpg|thumb|Die linke Lampe ist an ein Netzgerät angeschlossen, die rechte über einen Schalter an die Steckdose.]]
 +
Eine 60W-Glühbirne ist an der Steckdose angeschlossen, die andere (12V/250mA) wird mit einem Netzgerät betrieben. Bei beiden Lampen wird die Stromstärke gemessen.
 +
;Beobachtung
 +
Durch beide Lampen fließt der gleiche Strom mit einer Stärke von ca. 0,25 Ampère, aber die an der Steckdose angeschlossene Lampe ist viel heller!
  
===Masse der Erde===
+
;Folgerung
*Wieviel (schwere) Masse hat die Erde?
+
Offensichtlich ist "der Strom aus der Steckdose" anders als "der Strom aus dem Netzgerät". Der "Steckdosenstrom" transportiert mehr Energie!
  
Dazu kann man näherungsweise die Erde als Kugel betrachten. Den [http://de.wikipedia.org/wiki/Erdradius#Geschichtliches Erdradius] konnte man schon in der Antike bestimmen und wird heute mit Hilfe von Satelliten vermessen:
+
====Versuch: Kichererbsentransport====
:<math>R \approx 6370\,\rm km </math>
+
;Aufbau
 +
[[Datei:Energiestromstärke Leistung Versuch Erbsenstromstärke.png|400px|left]]
 +
In einer Kiste auf einer Seite des Raumes befinden sich Erbsen. (Man kann auch Streichhölzer nehmen.) Die Erbsen sollen in eine noch leere Kiste auf der anderen Seite transportiert werden. Aber jede Person darf nur zwei Erbsen nehmen!
  
Außerdem kann man auf der Erde die Gravitationsfeldstärke zu <math>g \approx 9 {,}81 \rm \frac{N}{kg}</math> bestimmen.
+
Wir arbeiten zusammen und schauen, wie schnell wir die Erbsen transportieren können.
 +
<br style="clear: both" />  
  
Mit einer Gravitationsdrehwaage kann man weiterhin die Gravitationskonstante messen:  
+
;Messwerte und Auswertung
:<math>G=6{,}673\;84\; \cdot 10^{-11} \mathrm{\frac{m^3}{kg \cdot s^2}} </math>
+
In diese leere Tabelle schreiben wir unsere Ergebnisse:
 +
{|class="wikitable" style="text-align: center"
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Erbsen-<br>beladung
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Zeit-<br>spanne
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Personen-<br>anzahl
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Erbsen-<br>anzahl
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Personen-<br>stromstärke
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Erbsen-<br>stromstärke
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
<math>2\,\rm \frac{E}{P}</math>
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
.
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
.
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
.
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
.
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|}
  
Wie "schwer" ist also die Erde?
+
Ob wir uns bei den Erbsen verzählt haben, kann man leicht überprüfen. Die Personenanzahl multipliziert mit der Erbsenbeladung muss die Erbsenanzahl ergeben!
  
===Gravitationsfeldstärke im All===
+
Die Stromstärken berechnen sich als Personen pro Zeit und als Erbsen pro Zeit.
*Wie groß ist die Gravitationsfeldstärke in einem Abstand von 6370 km über dem Erdboden?
+
*Welche Kraft wirkt dort auf einen 1000kg schweren Satelliten?
+
Lösen Sie diese Aufgabe auf zwei Wegen.  
+
  
Einmal, indem Sie die Erdmasse als bekannt voraussetzen. Und einmal, indem Sie sich überlegen, wie sich die Feldstärke verändert, wenn der Abstand zum Erdmittelpunkt verdoppelt wird.
+
Man bemerkt, dass man die Erbsenstromstärke auch mit Hilfe der Personenstromstärke ausrechnen kann. Dazu muss man nur die Personenstromstärke mit der Beladung multiplizieren!
  
===Gravitation in der Erdkugel===
 
[[Datei:The_Earth_seen_from_Apollo_17.png|thumb]]
 
*Wie groß ist die Stärke des Schwerefeldes innerhalb der Erdkugel?
 
:Dazu nehmen wir vereinfachend an, dass die Erde überall die gleiche Massendichte <math>\rho</math> hat, was nicht der Realität entspricht (Vgl. Wikipedia [http://de.wikipedia.org/wiki/Innerer_Aufbau_der_Erde Innerer Aufbau der Erde].)
 
:Dann sollten Sie den Satz über die Quellenstärke verwenden:
 
::<math>\frac{1}{4 \pi \, G} \, g \, A = m</math>
 
:Als geeignete Flächen bieten sich die Oberflächen von Kugeln an.
 
  
===Probekörper im Kondensator===
 
  
Zwei geladene Platten, je 30cm x 30cm groß, eine mit 8 10<sup>-8</sup> C, die andere mit -8 10<sup>-8</sup> C.
 
  
*Bestimmen Sie die Stärke des elektrischen Feldes unter der Annahme, dass das Feld sich ausschließlich zwischen den Platten befindet und dort homogen ist.
+
 
*Warum ist dabei die Feldstärke zwischen den Platten nicht vom Abstand der Platten abhängig?
+
 
Zwischen die Platten wird ein negativ geladener Tischtennisball gehängt. Auf ihn wirkt eine Kraft von 0,01 N.
+
 
*In welche Richtung wird der Ball gezogen?
+
 
*Wieviel Ladung sitzt auf dem Ball?
+
 
 +
 
 +
 
 +
 
 +
 
 +
==Vergleich des Erbsentransports mit dem elektrischen Energietransport==
 +
Mit Hilfe des Erbsentransportes können wir erklären, warum die Lampen so unterschiedlich hell leuchten. Dazu vergleichen wir den Erbsentransport durch Personen mit dem Energietransport durch die elektrische Ladung:
 +
 
 +
*Die im Kreis laufenden Personen entsprechen der im Kreis fließenden Ladung: <math> \text{1 Person } \widehat{=} \text{ 1 Coulomb}</math>
 +
*Die transportierten Erbsen entsprechen der transportierten Energie: <math> \text{1 Erbse } \widehat{=} \text{ 1 Joule}</math>
 +
*Die Erbsenbeladung entspricht dem elektrischen Potential: <math> \text{1 Erbse pro Person } \widehat{=} \text{ 1 Joule pro Coulomb} = \text{1 Volt}</math>
 +
 
 +
Jetzt können wir die entsprechende Tabelle aufstellen:
 +
 
 +
{|class="wikitable" style="text-align: center"
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Energie-<br>beladung
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Zeit-<br>spanne
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Ladungs-<br>menge
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Energie-<br>menge
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
(Ladungs-)<br>Stromstärke
 +
!width="16%" style="border-style: solid; border-width: 4px "|
 +
Energie-<br>stromstärke<br>(Leistung)
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
<math>12\,\rm V = 12\,\rm \frac{J}{C}</math>
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
<math>0{,}25\,\rm A=0{,}25\,\rm \frac{C}{s}</math>
 +
|style="border-style: solid; border-width: 4px "|
 +
|-
 +
|style="border-style: solid; border-width: 4px "|
 +
<math>230\,\rm V = 230\,\rm \frac{J}{C}</math>
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
|style="border-style: solid; border-width: 4px "|
 +
<math>0{,}25\,\rm A=0{,}25\,\rm \frac{C}{s}</math>
 +
|style="border-style: solid; border-width: 4px "|
 +
|}
 +
 
 +
Weil wir die Zeitdauer nicht kennen, die Lampen können ja eine Sekunde oder eine Stunde lang angeschaltet sein, können wir uns eine wählen.  
 +
 
 +
Wählt man als Zeitdauer eine Sekunde, ist es einfach die geflossene Ladungsmenge zu bestimmen, denn bei einer Stromstärke von 0,25 Ampère fließen ja gerade 0,25 Coulomb pro Sekunde!
 +
In zwei Sekunden fließen daher 0,5 Coulomb usw.
 +
 
 +
Die transportierte Energiemenge ergibt sich aus der geflossenen Ladung mal dem Beladungsmaß.
 +
 
 +
Die Energiestromstärke kann man jetzt entweder als Energie pro Zeit berechnen oder als Ladungsstromstärke mal Beladungsmaß.

Aktuelle Version vom 30. April 2025, 12:19 Uhr

Elektrischer Energietransport: Beladungsmaß und Leistung

Versuch: Eine helle Lampe

Aufbau
Die linke Lampe ist an ein Netzgerät angeschlossen, die rechte über einen Schalter an die Steckdose.

Eine 60W-Glühbirne ist an der Steckdose angeschlossen, die andere (12V/250mA) wird mit einem Netzgerät betrieben. Bei beiden Lampen wird die Stromstärke gemessen.

Beobachtung

Durch beide Lampen fließt der gleiche Strom mit einer Stärke von ca. 0,25 Ampère, aber die an der Steckdose angeschlossene Lampe ist viel heller!

Folgerung

Offensichtlich ist "der Strom aus der Steckdose" anders als "der Strom aus dem Netzgerät". Der "Steckdosenstrom" transportiert mehr Energie!

Versuch: Kichererbsentransport

Aufbau
Energiestromstärke Leistung Versuch Erbsenstromstärke.png

In einer Kiste auf einer Seite des Raumes befinden sich Erbsen. (Man kann auch Streichhölzer nehmen.) Die Erbsen sollen in eine noch leere Kiste auf der anderen Seite transportiert werden. Aber jede Person darf nur zwei Erbsen nehmen!

Wir arbeiten zusammen und schauen, wie schnell wir die Erbsen transportieren können.

Messwerte und Auswertung

In diese leere Tabelle schreiben wir unsere Ergebnisse:

Erbsen-
beladung

Zeit-
spanne

Personen-
anzahl

Erbsen-
anzahl

Personen-
stromstärke

Erbsen-
stromstärke

2EP

.

.

.

.

Ob wir uns bei den Erbsen verzählt haben, kann man leicht überprüfen. Die Personenanzahl multipliziert mit der Erbsenbeladung muss die Erbsenanzahl ergeben!

Die Stromstärken berechnen sich als Personen pro Zeit und als Erbsen pro Zeit.

Man bemerkt, dass man die Erbsenstromstärke auch mit Hilfe der Personenstromstärke ausrechnen kann. Dazu muss man nur die Personenstromstärke mit der Beladung multiplizieren!







Vergleich des Erbsentransports mit dem elektrischen Energietransport

Mit Hilfe des Erbsentransportes können wir erklären, warum die Lampen so unterschiedlich hell leuchten. Dazu vergleichen wir den Erbsentransport durch Personen mit dem Energietransport durch die elektrische Ladung:

  • Die im Kreis laufenden Personen entsprechen der im Kreis fließenden Ladung: 1 Person ˆ= 1 Coulomb
  • Die transportierten Erbsen entsprechen der transportierten Energie: 1 Erbse ˆ= 1 Joule
  • Die Erbsenbeladung entspricht dem elektrischen Potential: 1 Erbse pro Person ˆ= 1 Joule pro Coulomb=1 Volt

Jetzt können wir die entsprechende Tabelle aufstellen:

Energie-
beladung

Zeit-
spanne

Ladungs-
menge

Energie-
menge

(Ladungs-)
Stromstärke

Energie-
stromstärke
(Leistung)

12V=12JC

0,25A=0,25Cs

230V=230JC

0,25A=0,25Cs

Weil wir die Zeitdauer nicht kennen, die Lampen können ja eine Sekunde oder eine Stunde lang angeschaltet sein, können wir uns eine wählen.

Wählt man als Zeitdauer eine Sekunde, ist es einfach die geflossene Ladungsmenge zu bestimmen, denn bei einer Stromstärke von 0,25 Ampère fließen ja gerade 0,25 Coulomb pro Sekunde! In zwei Sekunden fließen daher 0,5 Coulomb usw.

Die transportierte Energiemenge ergibt sich aus der geflossenen Ladung mal dem Beladungsmaß.

Die Energiestromstärke kann man jetzt entweder als Energie pro Zeit berechnen oder als Ladungsstromstärke mal Beladungsmaß.