*: Unterschied zwischen den Versionen

Aus Schulphysikwiki
Wechseln zu: Navigation, Suche
(Leere Seite)
 
(180 dazwischenliegende Versionen des gleichen Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
 
__NOTOC__
 
__NOTOC__
==Leere Seite==
 
 
{|
 
{|
|height="800px"|
+
|height="1100px"|
|}
+
|}__NOTOC__
 +
==Praktikum: Untersuchung eines Fadenpendels==
 +
[[Datei:Praktikum Fadenpendel Aufbau.jpg|thumb|]]
 +
* Untersuchen Sie experimentell, wovon die Frequenz, bzw. die Schwingungsdauer eines frei schwingenden Fadenpendels abhängt.
  
__NOTOC__
+
* Als vereinfachtes Modell der Schaukel oder des Uhrenpendels nehmen wir einen an einem Faden hängenden Gegenstand. Wir nehmen an, dass die Ausdehnung des Gegenstandes klein ist gegenüber der Fadenlänge. In der Vereinfachung ist die Masse in einem Punkt, dem Schwerpunkt, konzentriert und der Faden masselos. Die Pendellänge ist dann der Abstand vom Aufhängepunkt zum Schwerpunkt. Eine solche Abstraktion heißt auch "mathematisches Pendel".
  
==Aufgaben zum Modell des Wasserstromkreises==
+
Mögliche Beeinflussungen durch:
====1) Vergleich von Wasserstromkreis und elektrischem Stromkreis====
+
Ordne die Begriffe an die richtige Stelle der Tabelle. (Es können auch mehrere Begriffe an der gleichen Stelle richtig sein.)
+
  
Elektrizität, Batterie, Wasserrad, Netzgerät, elektrische Ladung, Solarzelle, Schalter, Schlauch, Dynamo (Generator)
+
* Pendellänge l
 +
* Masse <math>m</math>
 +
* Amplitude  <math>\hat y</math>
 +
* Reibung
 +
* Antrieb
 +
Man darf immer nur eine Größe variieren und dann jeweils die Periode messen. Misst man z.B. für verschiedene Amplituden die Periode erhält man einen Zusammenhang zwischen Amplitude und Periodendauer, der streng genommen nur für die gewählte Länge, Masse usw. gilt.
 +
<br>Ändert sich die Periode bei Variation einer Größe nicht, so ist sie davon unabhängig.
  
{|class="wikitable"
+
Den Zusammenhang zwischen der Periodendauer und der Reibung bzw. des Antriebs kann man mit diesem Versuchsaufbau nicht untersuchen.
!style="border-style: solid; border-width: 2px ; width:20em;"|
+
Wasserstromkreis
+
!style="border-style: solid; border-width: 2px ; width:20em;"|
+
elektrischer Stromkreis
+
|-
+
|style="border-style: solid; border-width: 2px "|
+
Wasser
+
|style="border-style: solid; border-width: 2px "|
+
  
|-
+
;Aufbau:
|style="border-style: solid; border-width: 2px "|
+
[[Bild:Fadenpendel_Versuchsaufbau.jpg|thumb|right|Das Fadenpendel]]
Pumpe
+
|style="border-style: solid; border-width: 2px "|  
+
  
|-
+
Mittels einer Klemme wird eine Stange senkrecht an einem Tisch angebracht. An dieser Stange wird am oberen Ende eine kleine Querstange befestigt und an dieser eine Klemme.
|style="border-style: solid; border-width: 2px "|
+
  
|style="border-style: solid; border-width: 2px "|
+
Mit der Klemme wird nun ein Faden befestigt, an dessen Ende ein kleines Gewicht hängt.
Lampe, Motor, Bildschirm, ...
+
|-
+
|style="border-style: solid; border-width: 2px "|
+
Wasserhahn
+
|style="border-style: solid; border-width: 2px "|
+
  
 +
*Zur Untersuchung der Abhängigkeit von einer Größe muß diese variiert und alle anderen konstant gehalten werden.
 +
 +
;Beobachtung/Messwerte:
 +
 +
*Abhängigkeit von der Pendellänge l:
 +
:Die Pendellängen sollen ca. folgende Werte haben: 0,05m 0,1m 0,2m 0,3m 0,4m 0,5m.
 +
 +
Masse <math>m \rm \text{ in } kg</math>:
 +
 +
Amplitude <math>\hat y  \rm \text{ in } ^{\circ} </math>:
 +
 +
{| class="wikitable"
 +
|-
 +
||<math>l  \rm \text{ in } m</math>
 +
| style="height:30px; width:80px;" |   
 +
| style="height:30px; width:80px;" |   
 +
| style="height:30px; width:80px;" |   
 +
| style="height:30px; width:80px;" |   
 +
| style="height:30px; width:80px;" |   
 +
| style="height:30px; width:80px;" |
 +
|-
 +
|<math>10 \, T \rm \text{ in } s</math>
 +
| style="height:30px; width:80px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |
 +
|-
 +
|<math>T \rm \text{ in } s</math>
 +
| style="height:30px; width:80px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |
 +
|-
 +
|<math> \frac{T}{l} \text{ in } {\rm \frac{s}{m} }</math>
 +
| style="height:30px; width:80px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |
 +
|-
 +
|<math> \frac{T}{l^2} \text{ in } {\rm \frac{s}{m^2} }</math>
 +
| style="height:30px; width:80px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |
 
|-
 
|-
 +
|<math> \frac{T}{\sqrt{l}} \text{ in } {\rm \frac{s}{\sqrt{m}} }</math>
 +
| style="height:30px; width:80px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |
 
|}
 
|}
  
====2) Schaltpläne zeichnen====
+
*Abhängigkeit von der Masse m:
In der Abbildung sind die Schaltpläne eines Wasserstromkreises und eines elektrischen Stromkreises gezeichnet, die einander entsprechen.
+
:Durch Anhängen eines zweiten Gewichts kann man die Masse verdoppeln oder man verwendet verschiedene Gegenstände.
  
[[Datei:Aufgabe_Wasserstromkreis_Beispiel.png|500px]]
+
Pendellänge <math>l \rm \text{ in } m</math>:
  
Zeichne zu den gegebenen Schaltplänen den jeweils entsprechenden Wasserstromkreis, bzw. den entsprechenden elektrischen Stromkreis. (Das ist auch mit Hilfe von Geogebra möglich.)
+
Amplitude <math>\hat y \rm \text{ in } ^{\circ} </math>:
<gallery widths=300px heights=200px  perrow=2 >
+
Bild:Aufgabe Wasserstromkreis a.png|a)
+
Bild:Aufgabe Wasserstromkreis b.png|b)
+
Bild:Aufgabe Wasserstromkreis c.png|c)
+
Bild:Aufgabe Wasserstromkreis d.png|d)
+
</gallery>
+
  
 +
{| class="wikitable"
 +
|-
 +
| <math>m  \rm \text{ in } kg</math>
 +
| style="height:30px; width:80px;" | 
 +
| style="height:30px; width:80px;" | 
 +
|-
 +
|<math>10 \, T \rm \text{ in } s</math>
 +
| style="height:30px; width:80px;" |   
 +
| style="height:30px; width:50px;" | 
 +
|-
 +
|<math>T \rm \text{ in } s</math>
 +
| style="height:30px; width:80px;" |   
 +
| style="height:30px; width:50px;" |
 +
|}
  
====3) Stromrichtung====
+
*Abhängigkeit von der Amplitude <math>\hat y</math>:
Kennzeichne in den Schaltplänen von Aufgabe 2) die Stromrichtung des Wassers, bzw. des elektrischen Stroms.
+
 
 +
Masse <math>m \rm \text{ in } kg</math>:   
 +
 
 +
Pendellänge <math>l  \rm \text{ in } m</math>:
 +
 
 +
{| class="wikitable"
 +
|-
 +
|<math>\hat y \rm \text{ in } ^{\circ} </math>
 +
| style="height:30px; width:80px;" |  5°
 +
| style="height:30px; width:80px;" |  10° 
 +
| style="height:30px; width:80px;" |  20°
 +
| style="height:30px; width:80px;" |  40°
 +
| style="height:30px; width:80px;" |  60°
 +
| style="height:30px; width:80px;" |  80°
 +
|-
 +
|<math>10 \, T \rm \text{ in } s</math>
 +
| style="height:30px; width:80px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |
 +
|-
 +
|<math>T \rm \text{ in } s</math>
 +
| style="height:30px; width:80px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |
 +
|-
 +
|<math> \frac{T}{\hat y} \text{ in } {\rm \frac{s}{\circ} }</math>
 +
| style="height:30px; width:80px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |
 +
|-
 +
|<math> \frac{T}{\hat y^2} \text{ in } {\rm \frac{s}{\circ ^2} }</math>
 +
| style="height:30px; width:80px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |
 +
|-
 +
|<math> \frac{T}{\sqrt{\hat y}} \text{ in } {\rm \frac{s}{\sqrt{\circ}} }</math>
 +
| style="height:30px; width:80px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |
 +
|}
  
====4) An- und Ausschalten====
+
;Erklärung/Auswertung:
In den Stromkreisen von Aufgabe 2) werden alle Hähne geöffnet und alle Schalter geschlossen.
+
Dann wird die Pumpe angeschaltet, bzw. die Batterie angeschlossen.
+
  
Welche Lampe, bzw. welches Wasserrädchen, geht in den verschiedenen Stromkreisen zuerst an, welche später? Begründe deine Antwort.
+
Die gemessenen Zusammenhänge werden jeweils in ein Koordinatensystem gezeichnet. Man trägt zum Beispiel die Periodendauer (y-Achse) über die Fadenlänge (x-Achse) auf.
  
====5) schnell und langsam, hell und dunkel====
+
Um einen rechnerischen Zusammenhang zwischen den Größen zu finden, sucht man nach konstanten Quotienten oder Produkten der Messgrößen. Diese werden in die Tabelle eingetragen.  
Alle Lämpchen der Stromkreise von Aufgabe 2) sind gleich gebaut, ebenso sind alle Wasserrädchen von gleicher Bauweise.
+
<br>Welche Lampe aus den oberen Stromkreisen brennt hell, welche weniger? Welche Rädchen drehen sich schnell, welche langsam. Begründe deine Antworten.
+
  
====6) Schalter und Wasserhähne====
+
Als Beispiel hier der Zusammenhang zwischen Periodendauer und Pendellänge. Es kommen mehrere Möglichkeiten in Betracht:
Beschreibe für die Stromkreise 2a), 2c) und 2d) was passiert, wenn man die unterschiedlichen Schalter / Wasserhähne schließt oder öffnet. Erstelle dazu eine Tabelle wie die folgende:
+
#<math>T = c \cdot l \quad \Leftrightarrow \quad c = \frac{T}{l}</math>
 +
#<math>T = c \cdot l^2 \quad \Leftrightarrow \quad c = \frac{T}{l^2}</math>
 +
#<math>T = c \cdot \sqrt{l} \quad \Leftrightarrow \quad c = \frac{T}{\sqrt{l}}</math>
  
Schalter1 Schalter2 LampeA LampeB LampeC
+
Man berechnet daher alle Quotienten und untersucht, ob ein Quotient für alle Messungen ungefähr gleich bleibt. Wenn dies der Fall ist, so nimmt man den Mittelwert der Quotienten, um damit eine Formel aufzustellen.
    0        0        0      0      0
+
    1        1        1      1      1
+
    0        1        1      1      0
+
    1        0        0      0      0
+
Dabei bedeutet die 1: Strom kann fließen und die 0: Strom kann nicht fließen.
+

Aktuelle Version vom 22. September 2025, 22:59 Uhr

Praktikum: Untersuchung eines Fadenpendels

Praktikum Fadenpendel Aufbau.jpg
  • Untersuchen Sie experimentell, wovon die Frequenz, bzw. die Schwingungsdauer eines frei schwingenden Fadenpendels abhängt.
  • Als vereinfachtes Modell der Schaukel oder des Uhrenpendels nehmen wir einen an einem Faden hängenden Gegenstand. Wir nehmen an, dass die Ausdehnung des Gegenstandes klein ist gegenüber der Fadenlänge. In der Vereinfachung ist die Masse in einem Punkt, dem Schwerpunkt, konzentriert und der Faden masselos. Die Pendellänge ist dann der Abstand vom Aufhängepunkt zum Schwerpunkt. Eine solche Abstraktion heißt auch "mathematisches Pendel".

Mögliche Beeinflussungen durch:

  • Pendellänge l
  • Masse m
  • Amplitude ˆy
  • Reibung
  • Antrieb

Man darf immer nur eine Größe variieren und dann jeweils die Periode messen. Misst man z.B. für verschiedene Amplituden die Periode erhält man einen Zusammenhang zwischen Amplitude und Periodendauer, der streng genommen nur für die gewählte Länge, Masse usw. gilt.
Ändert sich die Periode bei Variation einer Größe nicht, so ist sie davon unabhängig.

Den Zusammenhang zwischen der Periodendauer und der Reibung bzw. des Antriebs kann man mit diesem Versuchsaufbau nicht untersuchen.

Aufbau
Das Fadenpendel

Mittels einer Klemme wird eine Stange senkrecht an einem Tisch angebracht. An dieser Stange wird am oberen Ende eine kleine Querstange befestigt und an dieser eine Klemme.

Mit der Klemme wird nun ein Faden befestigt, an dessen Ende ein kleines Gewicht hängt.

  • Zur Untersuchung der Abhängigkeit von einer Größe muß diese variiert und alle anderen konstant gehalten werden.
Beobachtung/Messwerte
  • Abhängigkeit von der Pendellänge l:
Die Pendellängen sollen ca. folgende Werte haben: 0,05m 0,1m 0,2m 0,3m 0,4m 0,5m.

Masse m in kg:

Amplitude ˆy in :

l in m
10T in s
T in s
Tl in sm
Tl2 in sm2
Tl in sm
  • Abhängigkeit von der Masse m:
Durch Anhängen eines zweiten Gewichts kann man die Masse verdoppeln oder man verwendet verschiedene Gegenstände.

Pendellänge l in m:

Amplitude ˆy in :

m in kg
10T in s
T in s
  • Abhängigkeit von der Amplitude ˆy:

Masse m in kg:

Pendellänge l in m:

ˆy in  10° 20° 40° 60° 80°
10T in s
T in s
Tˆy in s
Tˆy2 in s2
Tˆy in s
Erklärung/Auswertung

Die gemessenen Zusammenhänge werden jeweils in ein Koordinatensystem gezeichnet. Man trägt zum Beispiel die Periodendauer (y-Achse) über die Fadenlänge (x-Achse) auf.

Um einen rechnerischen Zusammenhang zwischen den Größen zu finden, sucht man nach konstanten Quotienten oder Produkten der Messgrößen. Diese werden in die Tabelle eingetragen.

Als Beispiel hier der Zusammenhang zwischen Periodendauer und Pendellänge. Es kommen mehrere Möglichkeiten in Betracht:

  1. T=clc=Tl
  2. T=cl2c=Tl2
  3. T=clc=Tl

Man berechnet daher alle Quotienten und untersucht, ob ein Quotient für alle Messungen ungefähr gleich bleibt. Wenn dies der Fall ist, so nimmt man den Mittelwert der Quotienten, um damit eine Formel aufzustellen.