*: Unterschied zwischen den Versionen

Aus Schulphysikwiki
Wechseln zu: Navigation, Suche
 
(177 dazwischenliegende Versionen des gleichen Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
 
__NOTOC__
 
__NOTOC__
==Leere Seite==
 
 
{|
 
{|
 
|height="950px"|
 
|height="950px"|
 +
|}__NOTOC__
 +
==Aufgaben zur Energie==
 +
====Energieträger und Energieformen====
 +
 +
{|class="wikitable" style="float:right;"
 +
!
 +
Energieträger
 +
! colspan="2" "|
 +
Name der Energieform
 +
|-
 +
|
 +
Holz
 +
|colspan="2"|chemische Energie
 +
|-
 +
|
 +
heißes Wasser
 +
|colspan="2"|Wärmeenergie
 +
|-
 +
|
 +
geriebener Luftballon
 +
|colspan="2"|elektrische Energie
 +
|-
 +
|
 +
Licht
 +
|colspan="2"|Lichtenergie<ref>Das Licht selbst besteht nicht aus Energie, es enthält die Energie! Was das Licht selbst ist, kann man nicht so einfach beantworten.</ref>
 +
|-
 +
|
 +
laufender Mensch
 +
|Bewegungsenergie
 +
|rowspan="3"|mechanische Energie
 +
|-
 +
|
 +
[[Media:Luftballon Druecken.jpg|zusammengedrückter Luftballon]]
 +
|Spannenergie
 +
|-
 +
|
 +
hochgelegenes Wasser in einem Stausee
 +
|Lageenergie
 
|}
 
|}
  
__NOTOC__
 
  
==Praktikum: Bestimmung von Energie- und Entropiekapazität von Wasser und Wasserdampf==
+
'''1)''' Eine Batterie ist ein Energieträger. Denn in der Batterie steckt Energie, mit der man einen Motor antreiben kann.
===Aufbau:===
+
*Nenne drei weitere Gegenstände, die auch Energieträger sind und sage, was man mit dieser Energie machen kann.
[[Bild:Versuchsaufbau_Energie_Entropiekapazität.jpg|thumb|right|Der Versuchsaufbau]]
+
 
:'''Materialien:'''
+
'''2)''' Die Tabelle zeigt, welche verschiedenen Namen man der Energie verschiedener Träger gegeben hat.
:1. Behälter(Plastikeimer ca. 1 Liter, Styroporbecher ca. 1/2 Liter, etc.)
+
*Nenne für jede Energieform ein ''anderes'' Beispiel in folgender Art:
:2. 1 Tauchsieder (ca.230W/ca.1000W)
+
:"Der Wind, also Luft, die sich schnell bewegt, enthält Bewegungsenergie."
:3. Bestimmte Menge Wasser
+
<br style="clear: both" />
:4. Stoppuhr
+
 
:5. Waage
+
{|class="wikitable" style="text-align: right; float:right; "
:6. Leistungsmesser
+
!style="border-style: solid; border-width: 5px "|
:7. Thermometer
+
Gegenstand
 +
 
 +
!style="border-style: solid; border-width: 5px "|
 +
Energiemenge in Joule
 +
 
 +
|-
 +
|style="border-style: solid; border-width: 5px "|
 +
Sonnenlicht auf einen m<sup>2</sup> für eine Sekunde
 +
 
 +
|style="border-style: solid; border-width: 5px "|
 +
1.300 J
 +
 
 +
|-
 +
|style="border-style: solid; border-width: 5px "|
 +
ein Liter Benzin
 +
 
 +
|style="border-style: solid; border-width: 5px "|
 +
30.000.000 J
 +
 
 +
|-
 +
|style="border-style: solid; border-width: 5px "|  
 +
Akku eines E-Autos<ref>Siehe Wikipedia: [https://de.wikipedia.org/wiki/Tesla_Model_3#Batterietechnik Tesla Model 3]</ref>
 +
 
 +
|style="border-style: solid; border-width: 5px "|
 +
180.000.000 J
 +
 
 +
|-
 +
|style="border-style: solid; border-width: 5px "|
 +
aufgepumpter Fahrradreifen
 +
 
 +
|style="border-style: solid; border-width: 5px "|
 +
600 J
 +
 
 +
|-
 +
|style="border-style: solid; border-width: 5px "|
 +
Schulranzen auf einem ein Meter hohen Tisch
 +
 
 +
|style="border-style: solid; border-width: 5px "|
 +
100 J
 +
 
 +
|-
 +
|style="border-style: solid; border-width: 5px "|
 +
Ein Liter kochendes Wasser<ref>Im Vergleich zu Zimmertemperatur bei 20°C.</ref>
 +
 
 +
|style="border-style: solid; border-width: 5px "|
 +
300.000 J
 +
 
 +
|-
 +
|style="border-style: solid; border-width: 5px "|
 +
Fahrradfahrerin mit 30 km/h
 +
 
 +
|style="border-style: solid; border-width: 5px "|
 +
3.000 J
 +
|-
 +
|style="border-style: solid; border-width: 5px "|
 +
eine Tafel Schokolade
 +
|style="border-style: solid; border-width: 5px "|
 +
2.000.000 J
 +
 
 +
|}
 +
 
 +
 
 +
'''3)''' Aus der Tabelle kann man ablesen:
 +
:"Mit der Energie von 38 Stunden Sonnenlicht auf einen Quadratmeter kann man den Akku eines E-Autos aufladen."
 +
*Bilde drei weitere Sätze in dieser Art.
 +
<br style="clear: both" />
 +
 
 +
==Energiewandler / Energieumlader==
 +
 
 +
[[Datei:Aufgaben_Energieumlader.png|399px|right]]
 +
'''4) Energie für Maschinen'''
  
'''Zu messsen:'''
+
Ein Automotor bekommt mit dem Benzin seine Energie und setzt damit das Auto in Bewegung. Der Motor wird dabei auch sehr heiss. Der Motor lädt die Energie vom Benzin auf die Bewegung des Autos und auf den heissen Motor um. 
Das Ziel ist es, herauszufinden wieviel Entropie und Energie sich in Wasser und Wasserdampf befindet.
+
:'''a)''' Trage in die Energieumladerdiagramme die passenden Energieträger oder den Namen des Umladers ein!
 +
:'''b)''' Wie kann man Energie von Licht auf Bewegung umladen? Zeichne dazu zwei geeignete Energieumlader hintereinander.
 +
<br style="clear: both" />
  
Dazu erhitzt man eine gewisse Menge Wasser mit einem Tauchsieder und läßt es dann eine Weile kochen. Durch Messung der Leistung des Tauchsieders bestimmt man die zugeführte Energiermenge.  
+
[[Datei:Aufgabe_Energie_für_Mensch_und_Tier.png|435px|right]]
Während des Erwärmens wird ständig die Temperatur und die verstrichene Zeit gemessen und danach auch die Menge des verdampften Wassers bestimmt.
+
'''5) Energie für den Menschen'''
  
:1) Erstelle zunächst ein Diagramm des zeitlichen Temperaturverlaufs T(t). (T ist die absolute Temperatur in Kelvin.) Wie interpretieren Sie den Verlauf?
+
Mit welchen Energieträgern bekommen der Mensch, eine Kuh, eine Graspflanze und eine Weizenpflanze ihre Energie? In welche Träger wird die Energie hineingesteckt?
:2) Bestimme die Wärmeenergiekapazität und die Verdampfungsenergie von Wasser. (In der Chemie spricht man von Verdampfungsenthalpie oder der latenten Wärme.)
+
*Trage die Begriffe in die Diagramme unter die Pfeile ein!
:3) Berechne die Stärke des Entropiestroms bei einer Temperatur von 100°C. Berechne daraus wieviel Entropie man benötigt, um ein Kilogramm Wasser der Temperatur 100°C zu verdampfen.
+
:4) Trage in einem Diagramm die Entropiestromstärke (<math>I_S= \dot S</math>) über die Zeit auf. Bestimme daraus die Entropiemenge, die man bei der Erwärmung des Wassers benötigt hat.
+
  
===Beobachtung:===
+
Brot/Fleisch   Grashalme
[[Bild:Diagramm.jpg|thumb|Theta/J.]]
+
Muskelmasse&Fett&Milch
Die Temperatur nimmt mit der Zeit gleichmäßig zu. Deshalb nimmt auch die Energiemenge gleichmäßig zu!
+
Muskelmasse&Fett&Milch 
 +
Kot&Urin          Kot&Urin
 +
Wärme           Wärme
 +
Grashalme   Weizenkörner
 +
Bewegung          Bewegung
 +
Licht           Licht
  
Die Entropieströmung <math>I_S = I_E / T</math> nimmt mit der Zeit ab, weil der Energiestrom konstant bleibt. Das kann man vergleichen mit dem Aufpumpen eines Reifens mit konstanter Leistung. Durch die Zunahme der Druckdifferenz nimmt die Luftströmung ab. Oder mit dem Laden eines Kondensators mit konstanter Leistung. Durch die Zunahme der Spannung nimmt die Stromstärke ab.
+
*Zeichne eine Energieumladerkette für einen Menschen, der nur Fleisch isst und einen Menschen, der nur Brot ist. Wo kommt schlußendlich die Energie für den Menschen her?
 +
<br style="clear: both" />
  
===Erklärung===
+
'''6) Viele verschiedene Energieumlader'''
'''(1)''' Bei der Erwärmung ist die Energiezufuhr konstant. Die Wärmekapazität von Wasser ist die Energiemenge pro kg und pro Kelvin:
+
:Energie in 20s: <math>E=288\,\rm W \cdot 20\, s = 5760\,\rm J</math>
+
:Das kann man nun auf ein Kilogramm hochrechnen:
+
                              Energie pro K: 1152J
+
                              Für 1 Kg: 3879J
+
Die Wärmekapazität von Wasser ist also ca. <math>3,9\frac{\rm kJ}{\rm kg \, K}</math>
+
-->Man benötigt um Wasser zu erwärmen 3,9 kJ Enrgie pro Kilogramm und pro Kelvin
+
  
'''(2)''' Bestimmung der hineingeflossenen Entropie
+
In [[Media: Energieumlader-Tabelle_teilausgefüllt_als_Aufgabe.pdf|dieser Tabelle]] sind viele Energieumlader aufgeführt. Auf der linken Seite sieht man, mit welchem Träger sie ihre Energie bekommen und oben kann man ablesen, mit welchem Träger sie die Energie wieder abgeben. Ein Baum bekommt seine Energie mit dem Licht und speichert sie in seinem Holz. Ein Ofen wiederum kann seine Energie mit Holz bekommen und sie mit der warmen Luft wieder abgeben.
[[Image:Diagramm2.jpg|thumb|Die Änderung der Entropie, aufgetragen über die Zeit.]]
+
[[Bild:Funktion_Entropie_Temperatur_1kg_Wasser.jpg|thumb|Der Zusammenhang von Entropiegehalt und Temperatur bei 1kg Wasser.]]
+
  
:Der Entropiefluss hängt über die Temperatur direkt mit dem Energiefluss zusammen:
+
*Ergänze die farbig markierten Lücken mit geeigneten Energieumladern.
:<math>I_E = T \cdot I_S \ \Leftrightarrow \ \dot E = T \cdot \dot S</math>
+
:<math>\Rightarrow \dot S = \frac{1}{T} \cdot \dot E = \frac{1}{T} \cdot P  </math>
+
:Man erhält die Entropiemenge, indem man über die Änderung der Entropie integriert. Dazu berechnet man <math>\frac{1}{T} \cdot P </math> für alle gemessenen Zeitpunkte und trägt es in einem Diagramm auf. Die Fläche unter dem Diagramm ist die hineingeflossene Entropiemenge. Offensichtlich benötigt man zu Beginn der Erwärmung mehr Entropie als am Ende.
+
:Da die Abnahme des Entropiestrom annähernd linear verläuft, kann man ohne großen Fehler die mittlere Entropiestromstärke aus der mittleren Temperatur <math>\bar T</math> berechnen: <math>\bar I_S \approx P/{\bar T}</math>. Man erhält dann für die Zunahme der Entropie:
+
:<math>S =  \bar I_S \quad t = E / \bar T</math>
+
:Die Entropiezunahme ist also ungefähr gleich der Energiemenge dividiert durch mittlere Temperatur.
+

Aktuelle Version vom 17. November 2025, 23:13 Uhr

Aufgaben zur Energie

Energieträger und Energieformen

Energieträger

Name der Energieform

Holz

chemische Energie

heißes Wasser

Wärmeenergie

geriebener Luftballon

elektrische Energie

Licht

Lichtenergie[1]

laufender Mensch

Bewegungsenergie mechanische Energie

zusammengedrückter Luftballon

Spannenergie

hochgelegenes Wasser in einem Stausee

Lageenergie


1) Eine Batterie ist ein Energieträger. Denn in der Batterie steckt Energie, mit der man einen Motor antreiben kann.

  • Nenne drei weitere Gegenstände, die auch Energieträger sind und sage, was man mit dieser Energie machen kann.

2) Die Tabelle zeigt, welche verschiedenen Namen man der Energie verschiedener Träger gegeben hat.

  • Nenne für jede Energieform ein anderes Beispiel in folgender Art:
"Der Wind, also Luft, die sich schnell bewegt, enthält Bewegungsenergie."


Gegenstand

Energiemenge in Joule

Sonnenlicht auf einen m2 für eine Sekunde

1.300 J

ein Liter Benzin

30.000.000 J

Akku eines E-Autos[2]

180.000.000 J

aufgepumpter Fahrradreifen

600 J

Schulranzen auf einem ein Meter hohen Tisch

100 J

Ein Liter kochendes Wasser[3]

300.000 J

Fahrradfahrerin mit 30 km/h

3.000 J

eine Tafel Schokolade

2.000.000 J


3) Aus der Tabelle kann man ablesen:

"Mit der Energie von 38 Stunden Sonnenlicht auf einen Quadratmeter kann man den Akku eines E-Autos aufladen."
  • Bilde drei weitere Sätze in dieser Art.


Energiewandler / Energieumlader

Aufgaben Energieumlader.png

4) Energie für Maschinen

Ein Automotor bekommt mit dem Benzin seine Energie und setzt damit das Auto in Bewegung. Der Motor wird dabei auch sehr heiss. Der Motor lädt die Energie vom Benzin auf die Bewegung des Autos und auf den heissen Motor um.

a) Trage in die Energieumladerdiagramme die passenden Energieträger oder den Namen des Umladers ein!
b) Wie kann man Energie von Licht auf Bewegung umladen? Zeichne dazu zwei geeignete Energieumlader hintereinander.


Aufgabe Energie für Mensch und Tier.png

5) Energie für den Menschen

Mit welchen Energieträgern bekommen der Mensch, eine Kuh, eine Graspflanze und eine Weizenpflanze ihre Energie? In welche Träger wird die Energie hineingesteckt?

  • Trage die Begriffe in die Diagramme unter die Pfeile ein!
Brot/Fleisch	  Grashalme
Muskelmasse&Fett&Milch
Muskelmasse&Fett&Milch  	
Kot&Urin          Kot&Urin
Wärme	          Wärme
Grashalme	  Weizenkörner
Bewegung          Bewegung
Licht	          Licht
  • Zeichne eine Energieumladerkette für einen Menschen, der nur Fleisch isst und einen Menschen, der nur Brot ist. Wo kommt schlußendlich die Energie für den Menschen her?


6) Viele verschiedene Energieumlader

In dieser Tabelle sind viele Energieumlader aufgeführt. Auf der linken Seite sieht man, mit welchem Träger sie ihre Energie bekommen und oben kann man ablesen, mit welchem Träger sie die Energie wieder abgeben. Ein Baum bekommt seine Energie mit dem Licht und speichert sie in seinem Holz. Ein Ofen wiederum kann seine Energie mit Holz bekommen und sie mit der warmen Luft wieder abgeben.

  • Ergänze die farbig markierten Lücken mit geeigneten Energieumladern.


Referenzfehler: Es sind <ref>-Tags vorhanden, jedoch wurde kein <references />-Tag gefunden.