Animation: Schwingung einer Flüssigkeit in einem U-Rohr: Unterschied zwischen den Versionen

Aus Schulphysikwiki
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: „ <ggb_applet width="881" height="521" version="4.0" ggbBase64="UEsDBBQACAAIAJJRMEAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQV…“)
 
 
(6 dazwischenliegende Versionen des gleichen Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
 +
Wasser schwingt in einem u-förmig gebogenen Glasrohr.
  
 +
Eine genauere Betrachtung der Bewegung mit Hilfe ihrer Differentialgleichung findet man auf [[Untersuchung_von_Schwingungen_mit_der_Differentialgleichung#Schwingende_Fl.C3.BCssigkeit_im_U-Rohr| dieser Seite]].
  
<ggb_applet width="881" height="521"  version="4.0" ggbBase64="UEsDBBQACAAIAJJRMEAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACACSUTBAAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1dyXLjSHo+dz9FBg8d0kwRQmZirZZ6QlXRcne4ekrhKpfb46UDJJMkWiDAAkCJ1MxE+Oi38NFv4JNv/QB+Bz+J/1xAYuMCbqLkYpQKBJDI5fvX/PNP8PIP01GA7lmc+FF41cKa3kIs7EY9PxxctSZpv+20/vDd15cDFg1YJ/ZQP4pHXnrVMnhJv3fVorrhYaPbb/fNjtk2etRsOw5x27hD3b7BnK5Huy2Epon/Ooz+6I1YMva67EN3yEbeu6jrpaLhYZqOX19cPDw8aFlTWhQPLgaDjjZNei0E3QyTq5b68hqqKzz0QEVxouv44uef3snq236YpF7YZS3EhzDxv/v6q8sHP+xFD+jB76XDq5bjuC00ZP5gCGOyLKOFLnihMQAyZt3Uv2cJPJo7FWNOR+OWKOaF/P5X8hsK5sNpoZ5/7/dYfNXSNcu2dEM3XMOlDqbEaaEo9lmYqrJYtXmR1XZ577MHWS3/JlqEjqVRFHQ8XiP6y18Q0YmOXvEDlgcCB8uSt3R5TafyQOTBkAdTljHk44Ysasgyhixj0Ba69xO/E7CrVt8LEkDQD/sxUG9+nqSzgIn+qAuL0eNXMKbEf2ScO4BNJORwXddf8T8L/gx+46I4SJxrNY0nDRvNmnQcvHmTZKeB0qxNS69pk5hLhmmtaFSOe5NxYjMHLTQl/om/Sot01TDLLcrz3RrkgnSEIV5eZKJyqaQDJUNeVnFPykYJlxfqItPlbI+RCbJh2cDlJsIuHGyCQBoQNpFhwil2kMWPNqI23DAQRQ7i5TBFQjhMB/4zbFGZhUyojF+1QSYRhoYMZFKEhUwZCCQJCbkEGSUUSpgmMuEh3jwmvApqIcOCM+ogA/rIRdLGUJDCg3AOzRNEMaL8YWwjYiGL14cNLuqWw7sOVRJk6cjCvEKQapBoKc1Q3kGUj8ZScPnheJIWIOqOetnXNBrPaQGlQR8ttJ7UTwWl+NVl4HVYAHbiA6ckQvdewCVCNNSPwhRlRLTktUHsjYd+N/nA0hSeStCv3r33zkvZ9AZKJ1nbomw3CpPbOErfRsFkFCYIdaNAn/c5CnDuO5n3Gk5o7oaRv2Hmbli573ZtuxHcQZOEQftRnGTFvV7vR15ioRoAyfdhMHsTM+9uHPnFYVxeCJNzySbdwO/5XvgJmJW3wnFBCwuEFxYITETWkSjufZglwMFo+icWR6CqTFezC58Wmslb1DY1uvgQsGlJ1+OyR2n+BuWKYLbkFpYts/s5gbwpW4x1EHPBzp38mLyJgsUlMfy33jidxMJ3ABGN+aCuw0HABIsIbQuGuXvXiaYfJG9QWdfH2ZjxR0QPOgMBO4r5mE0ooI4deRRleNfmpXRRRhcl9IzZ/N78PnaJKCGOHXkUpYB7ZdfUUHE2TKxnzfiJUGh6S4lNpqw473M7Pwn99F12kvrdOzVULB/442TUYXMOKtaJ91cn7zW4HEn6M2DEPTP+/R+VP8e/fxyy1OPOiEmo6Tq2bcL/xHUcyaglFr28Y3HIAiURwAyTaJJIAc8JS491/RGcyhsKUo+T++9hAPJqjw1ilg08EH6dBFzc1fPMXrksqrqJo9GP4f1H4KVKB8C5i4G/oBPcbsjbGSaXF9kYLpNu7I85R6MO2Jg7tuBZQMYDE9XLCy0XcKikK6pM/ZQDD6I/SYdRLBw70Fhw5HIdsBG4cSgVzBtORiz2u3MyfhIeIvRpokZFXM2ixDCJTjF1bdNVrMxJiqLOr6BZ58ZXVrGgL9xewu3IC8ZDQVklv4E3Y3EBR1HbT1FP9UOVSwLun6KRDwb3U6eFRt6Uf0G/B2v4O3QNf8NWpqOEsw+3Xc0wrMXHBis/Aw2mUbDIiw+Iat+fsrlhAeD8R2AjrzCkheylYBXuwPVNhIJIlSoQX37wez0WzvvszWkNinHMB839LjBKTIrT/NkxoCC0UE4ZK3KtJVxcJhwXoiNS6n2/n7CUw90mAt822ZSOgAcnXqKoqWuuPKuQkTp5MopWwLg4T0XFrYg4HcfQGq9GEeEapq5TqO9//g1GHf/rGTmXjsxqcl+XyU01bGDTJZZJTce1M4u8MWE357RBuWlXc3ANqxXtQ04BHkAtlImzf/kaVuRLrxWw4qiPpguJEh7C6+sk4ICm7EMXjFi4iFZIiVBSBVM9JVeW4/JvIEymMMJKftRADidA+6dRUjFeGhGf06FT21SEMnegE6anT6iKnrslStGdtRMw1/ErNDzPqhNeeJ3aUzcWVexMR+GTzympb0jJvMuXCCOHM9YSBBE0eswZXdFxPlsoTDDl1ZLLuAY2msGWoPZ2qNGTQe1ooBkL0LZkNeNkQKPHAs3MCahgNb0xaubJoNYuwHZA1KyyWmuOmnU6qOEjoWaXtFpz0OyTAe1YmDklpdYcM+dkMDuIdHaj0cgLeygUAfsPbOR3/bgbsNYiiuzpEkgPC20lhzpJs1tdWaWqqAJnNwr97tiLF5B2q4gWptgrpz1Yl5E9ohs5TInZDNRtXDzmD1h4D92N4gShqa5ibjM9I0Z2ZQo4tcWlGVaXHnGOUuAoxv4UXWflr7NS14RrEx3m7MTGhoVt4sAgr6lq4NrI6r021TfZsc+hHEsig4f+aBwAFdM5pQLudP4YpixOmIh2VSN8d4yNeWj2ffgx9sKEr/2Wo2zNecZWPGNVeKbXlGd62/FMXVQ54xrcVBJPmWk0vuRMLMEz1HVd5xT5pkY/47L/1NzrxCejoNuHcTvL4jbg18uyhpfqZ2+1rCWqvgwtbxftXJ33b+8h6GrmnsFIVWRiB2F8akVZSzmyVEt2mlGuc6qUwy+UclRRzq5Qjv2Cm9GOP3Ci1Gu/VPJlLq1RIV+/GfH6J0K69kvQmVUn4fuFj/AKzc5u8Tm4CrqG0e/Q2fTslvDTKb983tR3+P50XAeSdx1czTmA5/B9EPjjpOKlZ54Dt0OEY1JRZhs46wtF9qSycCouuq5Z3AuffwxXeexW6QaVDjy2LAtceMNxKXZN3cIl9x38e8Edulq4NUzlzMODWqFCsl5sl3PIJ4HCMgahFc64X80ZEtQ56e/XSdux9KShGeJTUJWL+rbgoVxeiwK8C7NXlvheKAuIBJZbLq9Sl91WFpCLlBCKMvDSsrQySYv7qpB+442j5NtGoqoe+SKwuwusbpcn3HORtcVzNt2TxK5JaRlGmyW1POe1XIKf41pu3otpHuU4UU/lgGtrPFVNIMYz1ESmT7JJls+nTiWjAWtuXTrednk+lX4Gqpuf0AW63qSHQTUZyKCE6sSg1LDAxO+3fzM947wAHGUJ5Dn0lWzSV3i4ok4IMQ2XgpPi6AAmdffa2wfV2eRznJ4RXYfeDqCzwUYZXg+VzhpcC5tAeIvoFrGdvfb1E2iyjPildMoN+JQ/XOquY2i2ZVDdxNBjF5hhl+6upmtN6/XJWU+Tp6orM/GTH/7Tn8FQnA2Bd2f6OUwA9VeIaO5f/wUAF/mE1czVQsqj1FOW5rj5nEf8/JIe7xSr3Z1Nz9EV4hTkouyHZw9wnNYKSH8Sijl5a1HJk/rgzfHcnKXTGn7G65Msj87SRJqzC/SwcHIU79oaNfO8i2WKoWYWsq7x8VwfgFDH+px9z7AOYshTjX8959EXDGejuSuDczy94fLPrLz8M9NBrO/O0sahHKhqK0Lz/WsDeejIw97XgaoGc/+xndUz91l15j5rNnVfi+6x5u5ZhLPtaLZtwMyLb7V1iaFbz3AWX6WLmpOvWz6oncjvtoRQn1jxTPMqmk7niQ1eg0ldhzoGdigl5en80gAc0WE2D9cN03AMGx6lDafzNUqRlBK9ZlzrbqcUt8z+PYRWxCeiFLNVuxmpSN+kkVKcfNGJdTqRbqkTVTRSEGeyTDFuHeXcPdb5RUEuFGR5fWJptHNX9bh7qtl4A2YppJqN988kzzQo/pISzWa4nHO+w1Rjy5Szg8w1jmFW6/CkpczqHZyULTfbHALO48/cbqNgNojCskKz5vl8YlWez5Q9KnmvrOE++VB3905N9saWfGJsyifG/EmDH9fMKcaqI/MAZVbttirpCTO8l0eNyrk747UbSQ6v72s8ObKPVenj693VUK/d6XRMqNt10p1Pe6OaazgO1m3dsHRqO471ciixWzjnQEyf8TwwP0xiXMfChFrYxE62bPMikD9AkGanKfkKEeDOnu0Qw3SAGo6l68+JDhtZWXsRC1Bmlio768w7VjKzKl17bCszKx4VdpYqQ+tsZWfJC7ezNXsPn4zv1+n+Z8346xTQ2pDgF91/KOhrJjqnqvtftPuzdk/vF59/l1iLXl3VbRwU0E8nJnByy7l6xTd5XO1ylBYuHr8sXHy998XcxwpRsmVZspo49Wu5NVZ6mamACnq+TNrgbylVpc9u0DeD9Fukn6P//ff/ROG+yJl7aR1/p6fIAV1F7dW0w89myeNJ14TfFDUq/OFXqJ001apvTieL2Mjr1FxO8UGi1W8z+KZnb85foSH6PcJNsXt7othhfJBt5rUW6I1UdW8rqs5vZH/8fbjBezVAmOYZcLXdMfdsd96s59/3Rf5t7k69X4P4Kt5tDnjORFDFpHQr1j7WataNwpenZvIlLJXHHQ8jnn6+STb3zdJk6q2StzeQRbkblnMCF0l1JjbG6nxn7M15RUhvmm3Xu2myX29bHyR7QcsBnMrNNvbR/Ulzze6YlQzclOAFeidqAXsVudc4nhV6N4kMLSd48P+K4FvSu6qDPrJpmuUofPN5EqXf3sTs84SFj6+RPAdqnz2gC3QmM8jPz+GCvPPDozzWaaoU6m0VG9nB+u5MNpG5XowmAJMn77yP7OfyZfHbEgno2f7idxjEjwnorYw4ei1RDM3F+Tx6/orrGb9Mnbyj72wmjTfZJoqiPN6dTUHdivQHrJncXAhxNM+ViFZuyAUDrFen73fiFzNWS2t1K4d86CmJueN2jloZIAUZwOfob+Lf/uu3/2Coz5I0YDAvVLy+Aas3mEQfi9UrnOro1R0frmbl+dQlzdQILUBIztE/eAmIEWJ+2P/tv4OgCYQ7hayfEEJHwwUMzWYQGgUI6Tm6DpPucNJJmmBX8z7c08OOVrGzNJvkscMNwSO/FA3Z30XDOPZ6/iRBfoi6o9cNJPiJ34u0CYgweSxyoJX9zIJZiDc1FOISiFKG4ZEB4yiOggYo0ueLogMuVSk410iOSyhe85BbOumxxpxoPBMMC/JsZvJc8HuWm5MCBJ0oCpi3cDh+Lc9x8z/Qs6ctw5sGFgwslytBya+cJKjfoCrs9ZV3vPHip4T+xPw0mIzXLCOW8RidIh5u/U/INMPj1ptssiOZi4VZEK/3cYpmm8tUTUJgg0CgSQVcJt6zUG0w7cAV8VvE53hwXjPFOz4asVN4Quxkqp8K2o94XYePfEEH/W3s9VM0gYnVD37QT2D24LNw9dxrzaLb0n1Cv9DVs6n6RbcGzu5xF91OdovI81lU22IX2tIl3R026TbfqrttpO0onPZ81m+faMvaRoy2fCP4DikE+0wkOAFO+8Jo6x2y21FQeFfq1jvcRsEJpV81CLHvc4fbKJ7vcNtld9soPh0onwrJYJJny+bJgLyCkwGxyI+He/8dcM4kx4FboBafEGoHAW2j13xznSjSJjkXlc3s59WGtZw5/HlXY7rGeu7x15VW5HYTzSaUYtsyiO1a2DXsFQZ4zXrpab7aXYiOJHpcobnX9OX83u7u+nHovm5fy4si/LJXQeRoXyPw3Y1mbcXfqzpR8tMdiHect0UYGn9ZhK2f1k9ZlaJTwWaBTqsQ6PznThT0ULB5qLNmm/lRWQiv0iDbJmXIEWyWkwFExjbNfQzHzpJ/KS28mtNatj4BQhsm0KigPD8fsGjAOrH33f8BUEsHCHodBqknEQAA3ooAAFBLAQIUABQACAAIAJJRMEBFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgAklEwQHodBqknEQAA3ooAAAwAAAAAAAAAAAAAAAAAXgAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAAC/EQAAAAA=" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" />
+
(Zur [https://www.geogebra.org/material/show/id/FgzVMKUk Datei] und zum [https://www.geogebra.org/download?lang=de Programm])
 +
 +
{{#widget:Iframe
 +
|url=https://www.geogebra.org/material/iframe/id/FgzVMKUk/width/930/height/590/border/888888/sfsb/true/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/false/rc/false/ld/false/sdz/false/ctl/false
 +
|width=930
 +
|height=590
 +
|border=0
 +
}}

Aktuelle Version vom 20. November 2022, 18:58 Uhr

Wasser schwingt in einem u-förmig gebogenen Glasrohr.

Eine genauere Betrachtung der Bewegung mit Hilfe ihrer Differentialgleichung findet man auf dieser Seite.

(Zur Datei und zum Programm)