*: Unterschied zwischen den Versionen

Aus Schulphysikwiki
Wechseln zu: Navigation, Suche
(Messen der Länge)
Zeile 3: Zeile 3:
 
|height="950px"|
 
|height="950px"|
 
|}__NOTOC__  
 
|}__NOTOC__  
==Messen der Länge==
+
==Praktikum: Untersuchung eines Fadenpendels“==
<gallery widths=130px heights=130px  perrow=4 >
+
[[Datei:Praktikum Fadenpendel Aufbau.jpg|thumb|]]
Bild:Sester_und_Freiburger_Elle_am_Münster.jpg|Die "Freiburger Elle" und das Hohlmaß "Sester" am Freiburger Münster.
+
* Untersuchen Sie experimentell, wovon die Frequenz, bzw. die Schwingungsdauer eines frei schwingenden Fadenpendels abhängt.  
Bild:DirkNowitzki.jpg|Dirk Nowitzki is a "7-footer": 7 feet, 0 Inches tall.
+
Bild:LeBron James.jpg|LeBron James is only 6 feet 9 Inches tall.
+
Bild:Mars Climate Orbiter.jpg|Diese Marssonde ist am 23. September 1999 in der Marsatmosphäre verglüht.
+
</gallery>
+
  
===Fragen zum Film. "Jagd nach dem Urmeter"===
+
* Als vereinfachtes Modell der Schaukel oder des Uhrenpendels nehmen wir einen an einem Faden hängenden Gegenstand. Wir nehmen an, dass die Ausdehnung des Gegenstandes klein ist gegenüber der Fadenlänge. In der Vereinfachung ist die Masse in einem Punkt, dem Schwerpunkt, konzentriert und der Faden masselos. Die Pendellänge ist dann der Abstand vom Aufhängepunkt zum Schwerpunkt. Eine solche Abstraktion heißt auch "mathematisches Pendel".
  
#Am 11. Dezember 1998 startete die Raumsonde "Mars Climate Orbiter" vom Weltraumbahnhof Cape Canaveral. Am 23. September 1999 erreichte die Sonde den Mars und stürzte ab. Was war der Grund für den Absturz?
+
Mögliche Beeinflussungen durch:
#Der "Sturm auf die Bastille" gilt als der Beginn der französischen Revolution. An welchem Tag fand die Eroberung dieses Gefängnisses statt? (Tipp: Welches ist der französische Nationalfeiertag?)[[Datei:Aufgabe zur Triangulation.png|thumb|250px|Triangulation zwischen Basel und Karlsruhe]]
+
 
#Warum gab es in Frankreich vor der Revolution so viele verschiedene Maßeinheiten und wieviele waren es ungefähr?
+
* Pendellänge l
#Welche Namen hatten die verschiedenen Längeneinheiten?
+
* Masse <math>m</math>
#Welche Nachteile hatten die vielen unterschiedlichen Maßeinheiten?
+
* Amplitude  <math>\hat y</math>
#Die Akademie der Wissenschaften bekommt von der Nationalversammlung den Auftrag ein neues Maßsystem zu erarbeiten. Antoine Prieur will ein Pariser Maß als die neue Einheit festlegen. Die anderen Wissenschaftler lehnen den Vorschlag ab. Wie will die Mehrheit der Akademie das Meter festlegen? Wie argumentieren Prieur und wie die restlichen Wissenschaftler?
+
* Reibung
#Was ist ein "Meridian"?
+
* Antrieb
#Wann starteten Pierre Méchain und Jean-Baptiste Delambre auf ihre Expedition und was war ihr Ziel?
+
Man darf immer nur eine Größe variieren und dann jeweils die Periode messen. Misst man z.B. für verschiedene Amplituden die Periode erhält man einen Zusammenhang zwischen Amplitude und Periodendauer, der streng genommen nur für die gewählte Länge, Masse usw. gilt.
#Was versteht man unter "Triangulation"?
+
<br>Ändert sich die Periode bei Variation einer Größe nicht, so ist sie davon unabhängig.
#Warum müssen die beiden Landvermesser auf hohe Berge steigen, wozu dienen die Peilmarken? Und warum brauchen sie gutes Wetter?
+
 
#Wozu wird eine Messung ganz oft wiederholt?
+
Den Zusammenhang zwischen der Periodendauer und der Reibung bzw. des Antriebs kann man mit diesem Versuchsaufbau nicht untersuchen.
#Was ist eine "Bogensekunde"?
+
 
#Warum muss man bei der Triangulation außer den Winkeln auch die Länge der Grundlinie messen?
+
;Aufbau:
#Warum müssen die Maßstäbe vor der Sonne geschützt werden?
+
[[Bild:Fadenpendel_Versuchsaufbau.jpg|thumb|right|Das Fadenpendel]]
#Wieso ist damals das Meter ca. 0,2mm zu kurz geworden?
+
 
#Die Festlegung des Meters über die Größe der Erde funktioniert aber prinzipiell nicht besonders genau. Warum?
+
Mittels einer Klemme wird eine Stange senkrecht an einem Tisch angebracht. An dieser Stange wird am oberen Ende eine kleine Querstange befestigt und an dieser eine Klemme.
#Zeichne diese Triangulation zwischen Basel und Karlsruhe im Maßstab 1:500.000 auf ein Din A3-Blatt. Die Grundlinie liegt zwischen Breisach und Freiburg. Zeichne sie 4,078cm lang. Miss dann die Entfernung zwischen Basel und Karlsruhe auf dem Papier und berechne die reale Entfernung zwischen den beiden Städten. (Din A4 im Maßstab 1:1.000.000, Grundlinie 2,039cm lang.)
+
 
 +
Mit der Klemme wird nun ein Faden befestigt, an dessen Ende ein kleines Gewicht hängt.
 +
 
 +
*Zur Untersuchung der Abhängigkeit von einer Größe muß diese variiert und alle anderen konstant gehalten werden.
 +
 
 +
;Beobachtung/Messwerte:
 +
 
 +
*Abhängigkeit von der Pendellänge l:
 +
:Die Pendellängen sollen ca. folgende Werte haben: 0,05m 0,1m 0,2m 0,3m 0,4m 0,5m.
 +
 
 +
Masse <math>m \rm \text{ in } kg</math>:
 +
 
 +
Amplitude <math>\hat y  \rm \text{ in } ^{\circ} </math>:
 +
 
 +
{| class="wikitable"
 +
|-
 +
||<math>l  \rm \text{ in } m</math>
 +
| style="height:30px; width:80px;" |   
 +
| style="height:30px; width:80px;" |   
 +
| style="height:30px; width:80px;" |   
 +
| style="height:30px; width:80px;" |   
 +
| style="height:30px; width:80px;" |   
 +
| style="height:30px; width:80px;" |
 +
|-
 +
|<math>10 \, T \rm \text{ in } s</math>
 +
| style="height:30px; width:80px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |
 +
|-
 +
|<math>T \rm \text{ in } s</math>
 +
| style="height:30px; width:80px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |
 +
|-
 +
|<math> \frac{T}{l} \text{ in } {\rm \frac{s}{m} }</math>
 +
| style="height:30px; width:80px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |
 +
|-
 +
|<math> \frac{T}{l^2} \text{ in } {\rm \frac{s}{m^2} }</math>
 +
| style="height:30px; width:80px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |
 +
|-
 +
|<math> \frac{T}{\sqrt{l}} \text{ in } {\rm \frac{s}{\sqrt{m}} }</math>
 +
| style="height:30px; width:80px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |
 +
|}
 +
 
 +
*Abhängigkeit von der Masse m:
 +
:Durch Anhängen eines zweiten Gewichts kann man die Masse verdoppeln oder man verwendet verschiedene Gegenstände.
 +
 
 +
Pendellänge <math>l \rm \text{ in } m</math>:
 +
 
 +
Amplitude <math>\hat y \rm \text{ in } ^{\circ} </math>:
 +
 
 +
{| class="wikitable"
 +
|-
 +
| <math>m  \rm \text{ in } kg</math>
 +
| style="height:30px; width:80px;" | 
 +
| style="height:30px; width:80px;" | 
 +
|-
 +
|<math>10 \, T \rm \text{ in } s</math>
 +
| style="height:30px; width:80px;" |   
 +
| style="height:30px; width:50px;" | 
 +
|-
 +
|<math>T \rm \text{ in } s</math>
 +
| style="height:30px; width:80px;" |   
 +
| style="height:30px; width:50px;" |
 +
|}
 +
 
 +
*Abhängigkeit von der Amplitude <math>\hat y</math>:
 +
 
 +
Masse <math>m \rm \text{ in } kg</math>:   
 +
 
 +
Pendellänge <math>l  \rm \text{ in } m</math>:
 +
 
 +
{| class="wikitable"
 +
|-
 +
|<math>\hat y \rm \text{ in } ^{\circ} </math>
 +
| style="height:30px; width:80px;" |  5°
 +
| style="height:30px; width:80px;" |  10° 
 +
| style="height:30px; width:80px;" |  20°
 +
| style="height:30px; width:80px;" |  40°
 +
| style="height:30px; width:80px;" |  60°
 +
| style="height:30px; width:80px;" |  80°
 +
|-
 +
|<math>10 \, T \rm \text{ in } s</math>
 +
| style="height:30px; width:80px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |
 +
|-
 +
|<math>T \rm \text{ in } s</math>
 +
| style="height:30px; width:80px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |
 +
|-
 +
|<math> \frac{T}{\hat y} \text{ in } {\rm \frac{s}{\circ} }</math>
 +
| style="height:30px; width:80px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |
 +
|-
 +
|<math> \frac{T}{\hat y^2} \text{ in } {\rm \frac{s}{\circ ^2} }</math>
 +
| style="height:30px; width:80px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |
 +
|-
 +
|<math> \frac{T}{\sqrt{\hat y}} \text{ in } {\rm \frac{s}{\sqrt{\circ}} }</math>
 +
| style="height:30px; width:80px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |   
 +
| style="height:30px; width:50px;" |
 +
|}
 +
 
 +
;Erklärung/Auswertung:
 +
 
 +
Die gemessenen Zusammenhänge werden jeweils in ein Koordinatensystem gezeichnet. Man trägt zum Beispiel die Periodendauer (y-Achse) über die halbe Stangenlänge (x-Achse) auf.
 +
 
 +
Um einen rechnerischen Zusammenhang zwischen den Größen zu finden, sucht man nach konstanten Quotienten oder Produkten der Messgrößen. Diese werden in die Tabelle eingetragen.
 +
 
 +
Als Beispiel hier der Zusammenhang zwischen Periodendauer und Pendellänge. Es kommen mehrere Möglichkeiten in Betracht:
 +
#<math>T = c \cdot l \quad \Leftrightarrow \quad c = \frac{T}{l}</math>
 +
#<math>T = c \cdot l^2 \quad \Leftrightarrow \quad c = \frac{T}{l^2}</math>
 +
#<math>T = c \cdot \sqrt{l} \quad \Leftrightarrow \quad c = \frac{T}{\sqrt{l}}</math>
 +
 
 +
Man berechnet daher alle Quotienten und untersucht, ob ein Quotient für alle Messungen ungefähr gleich bleibt. Wenn dies der Fall ist, so nimmt man den Mittelwert der Quotienten, um damit eine Formel aufzustellen.

Version vom 22. September 2025, 21:50 Uhr

Praktikum: Untersuchung eines Fadenpendels“

Praktikum Fadenpendel Aufbau.jpg
  • Untersuchen Sie experimentell, wovon die Frequenz, bzw. die Schwingungsdauer eines frei schwingenden Fadenpendels abhängt.
  • Als vereinfachtes Modell der Schaukel oder des Uhrenpendels nehmen wir einen an einem Faden hängenden Gegenstand. Wir nehmen an, dass die Ausdehnung des Gegenstandes klein ist gegenüber der Fadenlänge. In der Vereinfachung ist die Masse in einem Punkt, dem Schwerpunkt, konzentriert und der Faden masselos. Die Pendellänge ist dann der Abstand vom Aufhängepunkt zum Schwerpunkt. Eine solche Abstraktion heißt auch "mathematisches Pendel".

Mögliche Beeinflussungen durch:

  • Pendellänge l
  • Masse [math]m[/math]
  • Amplitude [math]\hat y[/math]
  • Reibung
  • Antrieb

Man darf immer nur eine Größe variieren und dann jeweils die Periode messen. Misst man z.B. für verschiedene Amplituden die Periode erhält man einen Zusammenhang zwischen Amplitude und Periodendauer, der streng genommen nur für die gewählte Länge, Masse usw. gilt.
Ändert sich die Periode bei Variation einer Größe nicht, so ist sie davon unabhängig.

Den Zusammenhang zwischen der Periodendauer und der Reibung bzw. des Antriebs kann man mit diesem Versuchsaufbau nicht untersuchen.

Aufbau
Das Fadenpendel

Mittels einer Klemme wird eine Stange senkrecht an einem Tisch angebracht. An dieser Stange wird am oberen Ende eine kleine Querstange befestigt und an dieser eine Klemme.

Mit der Klemme wird nun ein Faden befestigt, an dessen Ende ein kleines Gewicht hängt.

  • Zur Untersuchung der Abhängigkeit von einer Größe muß diese variiert und alle anderen konstant gehalten werden.
Beobachtung/Messwerte
  • Abhängigkeit von der Pendellänge l:
Die Pendellängen sollen ca. folgende Werte haben: 0,05m 0,1m 0,2m 0,3m 0,4m 0,5m.

Masse [math]m \rm \text{ in } kg[/math]:

Amplitude [math]\hat y \rm \text{ in } ^{\circ} [/math]:

[math]l \rm \text{ in } m[/math]
[math]10 \, T \rm \text{ in } s[/math]
[math]T \rm \text{ in } s[/math]
[math] \frac{T}{l} \text{ in } {\rm \frac{s}{m} }[/math]
[math] \frac{T}{l^2} \text{ in } {\rm \frac{s}{m^2} }[/math]
[math] \frac{T}{\sqrt{l}} \text{ in } {\rm \frac{s}{\sqrt{m}} }[/math]
  • Abhängigkeit von der Masse m:
Durch Anhängen eines zweiten Gewichts kann man die Masse verdoppeln oder man verwendet verschiedene Gegenstände.

Pendellänge [math]l \rm \text{ in } m[/math]:

Amplitude [math]\hat y \rm \text{ in } ^{\circ} [/math]:

[math]m \rm \text{ in } kg[/math]
[math]10 \, T \rm \text{ in } s[/math]
[math]T \rm \text{ in } s[/math]
  • Abhängigkeit von der Amplitude [math]\hat y[/math]:

Masse [math]m \rm \text{ in } kg[/math]:

Pendellänge [math]l \rm \text{ in } m[/math]:

[math]\hat y \rm \text{ in } ^{\circ} [/math] 10° 20° 40° 60° 80°
[math]10 \, T \rm \text{ in } s[/math]
[math]T \rm \text{ in } s[/math]
[math] \frac{T}{\hat y} \text{ in } {\rm \frac{s}{\circ} }[/math]
[math] \frac{T}{\hat y^2} \text{ in } {\rm \frac{s}{\circ ^2} }[/math]
[math] \frac{T}{\sqrt{\hat y}} \text{ in } {\rm \frac{s}{\sqrt{\circ}} }[/math]
Erklärung/Auswertung

Die gemessenen Zusammenhänge werden jeweils in ein Koordinatensystem gezeichnet. Man trägt zum Beispiel die Periodendauer (y-Achse) über die halbe Stangenlänge (x-Achse) auf.

Um einen rechnerischen Zusammenhang zwischen den Größen zu finden, sucht man nach konstanten Quotienten oder Produkten der Messgrößen. Diese werden in die Tabelle eingetragen.

Als Beispiel hier der Zusammenhang zwischen Periodendauer und Pendellänge. Es kommen mehrere Möglichkeiten in Betracht:

  1. [math]T = c \cdot l \quad \Leftrightarrow \quad c = \frac{T}{l}[/math]
  2. [math]T = c \cdot l^2 \quad \Leftrightarrow \quad c = \frac{T}{l^2}[/math]
  3. [math]T = c \cdot \sqrt{l} \quad \Leftrightarrow \quad c = \frac{T}{\sqrt{l}}[/math]

Man berechnet daher alle Quotienten und untersucht, ob ein Quotient für alle Messungen ungefähr gleich bleibt. Wenn dies der Fall ist, so nimmt man den Mittelwert der Quotienten, um damit eine Formel aufzustellen.