Untersuchung einer harmonischen Federschwingung: Unterschied zwischen den Versionen
K (→Erklärungen und Gesamtresultat) |
|||
Zeile 18: | Zeile 18: | ||
===Erklärungen und Gesamtresultat=== | ===Erklärungen und Gesamtresultat=== | ||
+ | Der [[Energie und Impuls einer mechanischen Schwingung|Schwingungspartner]] des Männchens und des Wagens ist die Erde. Durch die große Masse der Erde bleibt ihr Schwerpunkt praktisch unverändert. Im Schwerpunktsystem bleibt somit die eine Seite der Feder fest. | ||
+ | |||
Zur genaueren Beschreibung kann man zunächst die Größe der Rückstellkraft in Abhängigkeit vom Ort betrachten und auch nachmessen. Es fällt auf, dass die ''Rückstellkraft proportional zur Auslenkung'' ist. Eine Schwingung mit diesem Kraftverlauf nennt man auch ''[[Woran man eine harmonische Schwingung erkennt (Vier gleichwertige Kriterien)|harmonische Schwingung]]''. | Zur genaueren Beschreibung kann man zunächst die Größe der Rückstellkraft in Abhängigkeit vom Ort betrachten und auch nachmessen. Es fällt auf, dass die ''Rückstellkraft proportional zur Auslenkung'' ist. Eine Schwingung mit diesem Kraftverlauf nennt man auch ''[[Woran man eine harmonische Schwingung erkennt (Vier gleichwertige Kriterien)|harmonische Schwingung]]''. | ||
Version vom 4. Dezember 2011, 21:49 Uhr
Inhaltsverzeichnis
Messungen bei einem Schwingmännchen und einem schwingenden Wagen
Insbesondere interessiert uns, wie bei der Schaukel, die Frage wovon die Periodendauer, bzw. die Frequenz abhängen könnte:
- von der Masse der Figur?
- von der Amplitude?
- von der Feder?
Dazu verändern wir jeweils eine Größe, halten die anderen konstant und messen die Periodendauer.
Beim Wagen kann man gut noch andere Wagen draufstapeln und so die (träge) Masse vervielfachen.
Beim schwingenden Männchen kann man die Länge der Feder halbieren oder vierteln.
Messergebnisse
- Die Frequenz hängt nicht von der Amplitude ab. (Anders als bei der Schaukel!)
- Je größer die Masse der schwingenden Wagen, desto kleiner die Frequenz. Bei der vierfachen Masse halbiert sich die Frequenz.
- Je kürzer die Feder, desto kleiner ist auch die Frequenz. Bei einem Viertel der Federlänge verdoppelt sich die Frequenz.
Erklärungen und Gesamtresultat
Der Schwingungspartner des Männchens und des Wagens ist die Erde. Durch die große Masse der Erde bleibt ihr Schwerpunkt praktisch unverändert. Im Schwerpunktsystem bleibt somit die eine Seite der Feder fest.
Zur genaueren Beschreibung kann man zunächst die Größe der Rückstellkraft in Abhängigkeit vom Ort betrachten und auch nachmessen. Es fällt auf, dass die Rückstellkraft proportional zur Auslenkung ist. Eine Schwingung mit diesem Kraftverlauf nennt man auch harmonische Schwingung.
Mit einem Kraftmesser kann man die Gesetzmäßigkeit messen: Für die Wagen gilt: [math]F = -23 \frac{N}{m} \, y[/math] und für das Männchen bei der unverkürzten Feder: [math]F = -23 \frac{N}{m} \, y[/math] Die Proportionalitätskonstante gibt an, wie fest die Feder ist und heißt deswegen Federhärte oder Federkonstante [math]D[/math]. (Bildchen!)
- Was passiert nun, wenn die schwingende (träge) Masse vergrößert wird und die Feder unverändert bleibt?
- Die Rückstellkraft ist am selben Ort unverändert und daraus folgt:
- Entweder: Wegen der gleichen Impulsänderung ([math]F=\dot p = m \, \dot v[/math]) bei größerer Masse führt dies zu kleineren Geschwindigkeiten bei gleichen Strecken.
- Oder: Die größere Trägheit führt zu kleineren Beschleunigungen ([math]a=\frac{F}{m}[/math]) und somit zu kleineren Geschwindigkeiten.
- [math]f \sim \frac{1}{\sqrt{m}}[/math]
- Warum die Länge der Feder die Frequenz verändert, ist aus ähnlichen Überlegungen heraus einleuchtend.
- Zunächst verändert die Länge der Feder die Kraftwirkung bei gleicher Auslenkung auf das Männchen. Eine doppelt so lange Feder wird sich bei gleicher Kraftwirkung um die doppelte Strecke verlängern und bei halber Kraftwirkung um die gleiche Strecke. Mit anderen Worten: Halbe Federlänge - doppelte Federhärte D.
- Nun bleibt die träge Masse gleichgroß, aber die Kraft ist kleiner. Dementprechend sinkt auch die Impulsänderung (die Beschleunigung) und damit auch die Geschwindigkeit.
- [math]f \sim \sqrt{D}[/math]
- Warum die Frequenz von der Amplitude nicht abhängt, ist mit einfachen Argumenten nicht genau erklärbar. Zumindest ist es logisch, dass bei größeren Amplituden die Rückstellkraft auch größer wird. Denn so erreicht man größere Geschwindigkeiten, die für die größeren Strecken nötig sind.
- Eine Beschreibung der harmonischen Schwingung mit der Zeigerdarstellung oder durch die Lösung der Differentialgleichung liefert eine rechnerische Begründung.
- Durch Messungen kann man auch noch den Proportionalitätsfaktor finden. Er beträgt ungefähr [math]\frac{1}{2\cdot 3,14}[/math] hat also wohl seltsamerweise etwas mit der Zahl Pi zu tun! (Das leuchtet erst durch die Zeigerdarstellung oder die Differentialgleichung ein.)
[math]f = \frac{1}{2\cdot 3,14} \, \sqrt{\frac{D}{m}}[/math] Frequenz einer Federschwingung. Sie hängt nicht von der Amplitude ab.
FREYA
Animation eines schwingenden Wagens
Bei dieser Animation kann man mit den Schiebereglern links die Länge der Feder und die Masse des Wagens einstellen.
Mit der Federlänge ändert sich auch die Federkonstante der Feder. Die Geogebradatei kann man hier herunterladen.