Animation: Sinus und Cosinus im Einheitskreis: Unterschied zwischen den Versionen

Aus Schulphysikwiki
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: „Den Punkt P kann man auf dem Einheitskreis verschieben. Mit dem Radius r kann man die Entfernung von R zum Mittelpunkt einstellen. <ggb_applet width="800" hei…“)
 
Zeile 4: Zeile 4:
  
  
<ggb_applet width="800" height="600"  version="4.0" ggbBase64="UEsDBBQACAAIAAa7iD8AAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAAa7iD8AAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s1Vr9bttGEv87Be4dFjygiHuRtB/8TOUUctqiAZLYsHO94q6Hw4pcSVtRpEpSsmT0j3ukyyvcA+Re6WZ3SYmUZNmS4yY1ZC25O9zZ+fjNzC7V/WYxidFcZLlMk1OLtLGFRBKmkUyGp9asGLR865sXX3SHIh2KfsbRIM0mvDi1bEUpo1PLpaHvUma3CMOiZYswanGPey3qcH9g24OIRa6F0CKXz5P0LZ+IfMpDcRWOxIS/TkNeaMajopg+73Sur6/bFat2mg07w2G/vcgjC8Eyk/zUKi+ew3SNh66ZJqcYk85Pb16b6VsyyQuehMJCSoSZfPHFk+61TKL0Gl3LqBidWkHALDQScjgCmQJiW6ijiKagkKkICzkXOTxau9UyF5Oppcl4osafmCsUr8SxUCTnMhLZqYXbBGMP2wGzHZt4AXUcC6WZFElREpOSaaearjuX4trMq640S1hZkaZxn6sp0W+/IYopRs9UQ0xDoXFdM4RNH2amoaaxTeMYGts8bhtS29DYhsYGrcxlLvuxOLUGPM5BhTIZZGC+1X1eLGOh11N2rMUnz0CmXN4AMcPgJ0bn0I/xM/Xvwr+tBjpNIUmNa5HNDmRasQx85/4s6YMEZRVPsktM6twipruHqZH7PnISp8YTWOmP/t/iyPaJucnR3D+MoWv/LiJ2OxVUuiU6UD5StKX3FGKSK7ywADmBcnuCHMCG64GXO4gE0HgUARoQcZDtwC3xkataDzEPBmzEkI8UHWFIg8Px4cv29GQucmAy1esBJhEBRjZyGCIaUzYCJCGNS8AoZUDhOMiBhxR7QtUUzEW2C3fMRzasUUHSI0DI4EG4B/YUMYKYeph4iLrIVfMRW0Hd9dXSYUqKXIxcoiYEVAOiDZqB3kdMSeOW6pLJdFY0VBROouqySKcrWwA1xKN12DPxqREVn3Rj3hcxJIorZUmE5jxWiNCMBmlSoMqIvukbZnw6kmF+JYoCnsrRL3zOX/NCLL4H6rzirWnDNMkvsrR4mcazSZIjFKYxXq05jUntmq5WDTesNmDXB5zagFu79nbyTWEEzXIB/NMsr8h5FL1SFOvQAJo8T+LlWSb4eJrKphjdjs45XTELYxlJnvwIzqq4KL2gVQpS4apKQR5zq4WkWXS1zMGD0eLvIktBta7dDryAuOWfBxhbVkNBYwiDwfOQK/ARQtt2sP7zPXjqtrHAMBfzlY34QqzEH2YK2qXo6uZVfpbG6y6tgJd8WswyXT4AjDMlVi8ZxkI7iY63kJvDcT9dXBnvYGaud8sp3GGzgP5QKx5BcND5cli2fdNqGrWyFRXWNFhT4MrdZLQaJwHVFLrtm1ZTgf+apZWSkkpMgis2MtchDVsN4GjnV5l+lsjidXVTyHBcSkoM/dvZpC/WLqQIvpWmLDH1VpMLeTwu3c6GI3bHIktEXPo92HuWznID4xokIhHKCdyagVJtXJn0r7Am0xuJYSZKeh7r8s0oVY/iuktvdeupvs/Syatk/g78ZWMB3U61ym4eZnKq3BL1IVeMxdrzIplzSDVR/TkFVNBGqFIKKKRQ2gIIz4pRCg5xwYsMlITewpomPEnQ0zwczeLpaJnL8bUcy3YkTmBiCE/wmC4c02ycj4Qo3olFgXg/ncPItyJBF7NkXKALhMZqHpgMmAxQBMD9TiYA7CIfZwLMq6rscCRFXyTtP335Z4K/fgP6U3SXPJKg+Ww9QyQF+i4pBiD6DOSdgwiX6GY2QfBIIeKpZilUfSviGOYDpxaxchstuojFBOpLVGhMJbOJAFlXzpRpcUDLs9IQrPJC5Uko7f8CMX7DAfWNpoHhW1CHOKiP64q3xBZfiqxhaz3bmzQqGZd0eaxKZTSRiXkYNLDQtRXv5xD/C9gtgHcl692CWVoZP6GiVXuRhQqevrpaQkyl6mIgF2KV3cDq8ga8nDekWcO/gNQ0hvo71zGqKKORvvhBRpFIVsvlCeBBexVof1ouGRKjMPBdPToF+XUcrPlyaZktG+nQudL2ubVljapGuq85dLhcGQTvNcj5YJCLQmmQUK0+SneaCx8gP9klfxkDcsUKl6bS7U0tFGpVqNzQKChM70bwqOszTCcAnAglusR8KbMwFta65uFYqRVxsjJjOiuqgdI45RRbxoFIUoOP2DZOAyo1ae+Dlf2m2VL+Todl+x0WaguRzGGlUMrAThyX+/wlrrRf9SxAOy1jGFJ23ZCaaSYqaC5Qr6LvVVQ9qMFa5oqVk/bsaq6eU16ZxfyamPXnJoGpilIOQL977Xmh8dE0p9iy48V+OzZBdnGHHXdjjFBTjuj2HjijO3HWKoHWInuNvYm0Y3AGmrcJ82waeB6lgYN96pbACwhmAfMY9VlgY7VH3IND5ygcXvLlbhBebBmP7zdeBjNVpuF3xcfHxWBDudtKXN6m9Js6ryMSzyZ05GQay1AWK1XGyg9eJQUUGkLXPdvV3FiIqSq1z5N3GU9ydZxnaCp3b+SoxTSDhSkHLBU7zywEvWAO9BX6UYeUf5w/Qxf/rFZuwozZQDYNWI2sZ3pwHKXY/ihWJG1qE0r9gBHX9x1q+yYNtj1GiE8IbNGIT7E6K7zThs5+G9aK4NKKIc8KkUNRfrf2L0vlP108nWcnz9BSNSdWM7xta74Z9y5/l7i3u75oERN7Wt6jWObj1hArIG3lHR3BFj3Ys8ElXQX5WjDrHZKJeseVe+qMbWiavmkeDgVSVmWtxyzLelm4Oyn0jDq3c0N0jwJtCjhaaSw6ysl1PDkquqxd3OjP2aludnzc+KxruEdJROCWfKqLH9394f3xFf/ldsX/L3JQzQ/kn2/VTz+pywSPWPbfGoLBHncH4bNDgvDZ5xOE2ScNwmdGnduY6R8ahPvHBeHywJdgenCl8UfaLh+Hm0ev+Zu+oo/uN/ykZ/zk/LZkXUXq2xxFH/iunACoN44jSTsIPOZ4gR04ju05NNhxOnkfbO5L5/c9onzAdo1nYQ2q1ZY+jtPrSzGIxULr9r6GuBJD1b9hCtgIXMA+AJ/ctqnO95siL2et9Jg/CLGHprn6voCZut7eVzfdve+uAiaMM8913QATZnsudvHW654DSq9PUO3kMnn64f3JMT5RhvG1a2z6RHiYT4RH+YQpfIjD7uETZLdPUJMFqzeid/kEXmfNY85ePkMnCNN8lxNsnwuoN1KkPBv48tdZWnz9M0z9M+QwlJl7a/tUoICHrOYMn/ZARuav+Tvx06ZK9E8JcpHJweqXI/rFMbYqW1SvkQooPvRBsdHEOfoLwm0PfYXm2V4Pa7kPw5k+i9kFtJsDkXZznAUc0nhD/lFONldo2nUCcyeY7qqwPm1Rc2surQx5y6YxP9Ce+ZH23KyAdfsRjjl3nZrVkyZrswBjSggl1Fe/VnT+QCbeHRVpIyr+TSZjEaMP79EpMj0QIiDEog7673/gi/gYosX//n2y6xR1K17Sxz4SIPvsql9ub8bKWgg0G0lmUxt75YeAQZXBCfgBI7Zffahf32XerVTWUGpNlVDL30dx7LNXnN3G1FUgKT9eqTcHU8y86oMP1JvT0NtZCttM1L/DFeEru587Op+9VlV8cby1P9qsVCt23bU3eiqd7VZrp/6bHv37uvK34i/+D1BLBwhXat3PkwoAAMguAABQSwECFAAUAAgACAAGu4g/1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAAa7iD9Xat3PkwoAAMguAAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAKgsAAAAA" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" />
+
<ggb_applet width="1000" height="750"  version="4.0" ggbBase64="UEsDBBQACAAIAAa7iD8AAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAAa7iD8AAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s1Vr9bttGEv87Be4dFjygiHuRtB/8TOUUctqiAZLYsHO94q6Hw4pcSVtRpEpSsmT0j3ukyyvcA+Re6WZ3SYmUZNmS4yY1ZC25O9zZ+fjNzC7V/WYxidFcZLlMk1OLtLGFRBKmkUyGp9asGLR865sXX3SHIh2KfsbRIM0mvDi1bEUpo1PLpaHvUma3CMOiZYswanGPey3qcH9g24OIRa6F0CKXz5P0LZ+IfMpDcRWOxIS/TkNeaMajopg+73Sur6/bFat2mg07w2G/vcgjC8Eyk/zUKi+ew3SNh66ZJqcYk85Pb16b6VsyyQuehMJCSoSZfPHFk+61TKL0Gl3LqBidWkHALDQScjgCmQJiW6ijiKagkKkICzkXOTxau9UyF5Oppcl4osafmCsUr8SxUCTnMhLZqYXbBGMP2wGzHZt4AXUcC6WZFElREpOSaaearjuX4trMq640S1hZkaZxn6sp0W+/IYopRs9UQ0xDoXFdM4RNH2amoaaxTeMYGts8bhtS29DYhsYGrcxlLvuxOLUGPM5BhTIZZGC+1X1eLGOh11N2rMUnz0CmXN4AMcPgJ0bn0I/xM/Xvwr+tBjpNIUmNa5HNDmRasQx85/4s6YMEZRVPsktM6twipruHqZH7PnISp8YTWOmP/t/iyPaJucnR3D+MoWv/LiJ2OxVUuiU6UD5StKX3FGKSK7ywADmBcnuCHMCG64GXO4gE0HgUARoQcZDtwC3xkataDzEPBmzEkI8UHWFIg8Px4cv29GQucmAy1esBJhEBRjZyGCIaUzYCJCGNS8AoZUDhOMiBhxR7QtUUzEW2C3fMRzasUUHSI0DI4EG4B/YUMYKYeph4iLrIVfMRW0Hd9dXSYUqKXIxcoiYEVAOiDZqB3kdMSeOW6pLJdFY0VBROouqySKcrWwA1xKN12DPxqREVn3Rj3hcxJIorZUmE5jxWiNCMBmlSoMqIvukbZnw6kmF+JYoCnsrRL3zOX/NCLL4H6rzirWnDNMkvsrR4mcazSZIjFKYxXq05jUntmq5WDTesNmDXB5zagFu79nbyTWEEzXIB/NMsr8h5FL1SFOvQAJo8T+LlWSb4eJrKphjdjs45XTELYxlJnvwIzqq4KL2gVQpS4apKQR5zq4WkWXS1zMGD0eLvIktBta7dDryAuOWfBxhbVkNBYwiDwfOQK/ARQtt2sP7zPXjqtrHAMBfzlY34QqzEH2YK2qXo6uZVfpbG6y6tgJd8WswyXT4AjDMlVi8ZxkI7iY63kJvDcT9dXBnvYGaud8sp3GGzgP5QKx5BcND5cli2fdNqGrWyFRXWNFhT4MrdZLQaJwHVFLrtm1ZTgf+apZWSkkpMgis2MtchDVsN4GjnV5l+lsjidXVTyHBcSkoM/dvZpC/WLqQIvpWmLDH1VpMLeTwu3c6GI3bHIktEXPo92HuWznID4xokIhHKCdyagVJtXJn0r7Am0xuJYSZKeh7r8s0oVY/iuktvdeupvs/Syatk/g78ZWMB3U61ym4eZnKq3BL1IVeMxdrzIplzSDVR/TkFVNBGqFIKKKRQ2gIIz4pRCg5xwYsMlITewpomPEnQ0zwczeLpaJnL8bUcy3YkTmBiCE/wmC4c02ycj4Qo3olFgXg/ncPItyJBF7NkXKALhMZqHpgMmAxQBMD9TiYA7CIfZwLMq6rscCRFXyTtP335Z4K/fgP6U3SXPJKg+Ww9QyQF+i4pBiD6DOSdgwiX6GY2QfBIIeKpZilUfSviGOYDpxaxchstuojFBOpLVGhMJbOJAFlXzpRpcUDLs9IQrPJC5Uko7f8CMX7DAfWNpoHhW1CHOKiP64q3xBZfiqxhaz3bmzQqGZd0eaxKZTSRiXkYNLDQtRXv5xD/C9gtgHcl692CWVoZP6GiVXuRhQqevrpaQkyl6mIgF2KV3cDq8ga8nDekWcO/gNQ0hvo71zGqKKORvvhBRpFIVsvlCeBBexVof1ouGRKjMPBdPToF+XUcrPlyaZktG+nQudL2ubVljapGuq85dLhcGQTvNcj5YJCLQmmQUK0+SneaCx8gP9klfxkDcsUKl6bS7U0tFGpVqNzQKChM70bwqOszTCcAnAglusR8KbMwFta65uFYqRVxsjJjOiuqgdI45RRbxoFIUoOP2DZOAyo1ae+Dlf2m2VL+Todl+x0WaguRzGGlUMrAThyX+/wlrrRf9SxAOy1jGFJ23ZCaaSYqaC5Qr6LvVVQ9qMFa5oqVk/bsaq6eU16ZxfyamPXnJoGpilIOQL977Xmh8dE0p9iy48V+OzZBdnGHHXdjjFBTjuj2HjijO3HWKoHWInuNvYm0Y3AGmrcJ82waeB6lgYN96pbACwhmAfMY9VlgY7VH3IND5ygcXvLlbhBebBmP7zdeBjNVpuF3xcfHxWBDudtKXN6m9Js6ryMSzyZ05GQay1AWK1XGyg9eJQUUGkLXPdvV3FiIqSq1z5N3GU9ydZxnaCp3b+SoxTSDhSkHLBU7zywEvWAO9BX6UYeUf5w/Qxf/rFZuwozZQDYNWI2sZ3pwHKXY/ihWJG1qE0r9gBHX9x1q+yYNtj1GiE8IbNGIT7E6K7zThs5+G9aK4NKKIc8KkUNRfrf2L0vlP108nWcnz9BSNSdWM7xta74Z9y5/l7i3u75oERN7Wt6jWObj1hArIG3lHR3BFj3Ys8ElXQX5WjDrHZKJeseVe+qMbWiavmkeDgVSVmWtxyzLelm4Oyn0jDq3c0N0jwJtCjhaaSw6ysl1PDkquqxd3OjP2aludnzc+KxruEdJROCWfKqLH9394f3xFf/ldsX/L3JQzQ/kn2/VTz+pywSPWPbfGoLBHncH4bNDgvDZ5xOE2ScNwmdGnduY6R8ahPvHBeHywJdgenCl8UfaLh+Hm0ev+Zu+oo/uN/ykZ/zk/LZkXUXq2xxFH/iunACoN44jSTsIPOZ4gR04ju05NNhxOnkfbO5L5/c9onzAdo1nYQ2q1ZY+jtPrSzGIxULr9r6GuBJD1b9hCtgIXMA+AJ/ctqnO95siL2et9Jg/CLGHprn6voCZut7eVzfdve+uAiaMM8913QATZnsudvHW654DSq9PUO3kMnn64f3JMT5RhvG1a2z6RHiYT4RH+YQpfIjD7uETZLdPUJMFqzeid/kEXmfNY85ePkMnCNN8lxNsnwuoN1KkPBv48tdZWnz9M0z9M+QwlJl7a/tUoICHrOYMn/ZARuav+Tvx06ZK9E8JcpHJweqXI/rFMbYqW1SvkQooPvRBsdHEOfoLwm0PfYXm2V4Pa7kPw5k+i9kFtJsDkXZznAUc0nhD/lFONldo2nUCcyeY7qqwPm1Rc2surQx5y6YxP9Ce+ZH23KyAdfsRjjl3nZrVkyZrswBjSggl1Fe/VnT+QCbeHRVpIyr+TSZjEaMP79EpMj0QIiDEog7673/gi/gYosX//n2y6xR1K17Sxz4SIPvsql9ub8bKWgg0G0lmUxt75YeAQZXBCfgBI7Zffahf32XerVTWUGpNlVDL30dx7LNXnN3G1FUgKT9eqTcHU8y86oMP1JvT0NtZCttM1L/DFeEru587Op+9VlV8cby1P9qsVCt23bU3eiqd7VZrp/6bHv37uvK34i/+D1BLBwhXat3PkwoAAMguAABQSwECFAAUAAgACAAGu4g/1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAAa7iD9Xat3PkwoAAMguAAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAKgsAAAAA" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" />

Version vom 12. Dezember 2011, 14:10 Uhr

Den Punkt P kann man auf dem Einheitskreis verschieben.

Mit dem Radius r kann man die Entfernung von R zum Mittelpunkt einstellen.


Bitte installiere Java, um diese Seite nutzen zu können.