Animation: Beschreibung einer harmonischen Schwingung mit der Zeigerdarstellung: Unterschied zwischen den Versionen

Aus Schulphysikwiki
Wechseln zu: Navigation, Suche
Zeile 5: Zeile 5:
 
An der Spitze des Zeigers kann man seine Länge verändern. Die Drehgeschwindigkeit ω des Zeigers kann man am  
 
An der Spitze des Zeigers kann man seine Länge verändern. Die Drehgeschwindigkeit ω des Zeigers kann man am  
 
oberen Schieberegler einstellen.
 
oberen Schieberegler einstellen.
<ggb_applet width="840" height="450"  version="4.2" ggbBase64="UEsDBBQACAAIAJx7dUMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACACce3VDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1cWY7jxhl+tk9RUABjxm6pWSwWF7vbhjzjsQ3MBk9n4nEcGJRYkspNkTJJqaW2A/gxc4q8JMgNcgEfYO6Qk+SvKpLioo2SeokReNwUyVq/f/vqr5LOPpuPfTRjUczD4LyFO1oLsaAfejwYnremyaBttz779P2zIQuHrBe5aBBGYzc5bxkdvbWsB3cdUxOVuQd3NvH0ATHbtoN7bYMxq+2Y1Gk7xBx41IB/FmkhNI/5x0H43B2zeOL22av+iI3dp2HfTWSboySZfHx6enV11cl674TR8HQ47HXmsddCMPIgPm+lHz6G5kqVrogsrmsaPv322VPVfJsHceIGfdZCYlZT/un7751d8cALr9AV95IRYIA12kIjxocjmKdlwDxPRakJTHbC+gmfsRjqFm7lpJPxpCWLuYF4/576hPx8Pi3k8Rn3WHTe0jpEt6lmWrZFiEawaRktFEacBUlaGKednmbNnc04u1Ltik8K5xZKwtDvuaJJRB30yy9I13QNnYgLVhcdLqapXmnqmUbURVcXQ12oKmOo6oYqaqgyhipjgNhmPOY9n523Bq4fA4w8GEQgwvw+ThY+k0NKoincLwHQTwDKmF9DWeiuhRTsMPQT7cTQ5P9q1oUp4kKHqr3d+8NZb1hzrN2605vML32w7JBkHRKTlPvT1/RnFySIhXh+QVjIRV4IEhLBUjLiYqS3prq15AVr6oLTl7b4IzXBPGguS/BoQVRUO5H/5P91Yd1+l6SRxNZryO49msaGHlUHx+3QkNp75C6FSZxgaspeLYPWerW0knPJPIu64vS6CfyjQXF2mrm+s3RAKB6Jsqk/SNg4FkMkjnSBCCMKhmRa4LEowg5cLGFQOsIUGRRusY1McbUQETZkIIJsJMphgqSjozb8MaR9mYhCW+KhpQwNEQNRgrB0jwYCFJB0sYCJTqAEpYhCJdE7Ft0SExkm3BAbGTBA4VwtYeYE6sE9dK4jghERdbGFdBOZOrKEg8aG8NumLcYOjerI1JApqoKHBu+sPDPUsBERswHbm4Qxz8EdMX+SS0XiyIPJNClh1x972cckrJT2wv7l5znW6RvmxkmxGMSnZRhU8aoUJd87890e84FMvBKKgNDM9YWflD0MwiBBmRLo6tkwcicj3o9fsSSBWjH60Z25T92EzZ9A6TjrW3Yto/cZm/Z97nE3eA1aIpoQDaI8mEvjyYI5tRzVTT8MI+/VIgbdQfPvWBRCScfumFSzdeKYGtw4YBOL7BXu2JaBbVOnpmHZGrjtuO8Kraeko5uOpZnUxrbtaA5UWv0KG6prNsvn5s5ZnOE/jITVpciKm6/jz0N/+WgS8iB55E6SaSSpGRhHJCbVDYY+k+DK6AUkp3/ZC+evFKpEtXWxmDBRRQ6gN3wU+mGEwCZ1CpMcpteeusoyYmR5KeHxhurSk5dUUtzLi2BHl2XktaeushSIXo0unSzOZoq1rCceS4cDEyqqptSb89Z3jCfgU1DcQtOAJ0/V03e/gsLy/mU677Tq8+m4B9qXtlBuHa9s/Qs/DIbSH5Wa37FxMRHgdHHyrSDO1NIsxyS6aTmG7ZhmS756I8ieTtXNxYglrnhAdUId27Io/NUd21b6XNHks0sWBcxX6hqAxkzDaawMaDmGacxeusmoG3jfsCHM46UrvG8CI62W9Fifj0GX1PNUPK7Qnj/CzNVTjw0jlkHnS8qthCffakXbqT2WTT2JwvHXwewCVFO9zM0V7DJxI1BXGIQAvDy8s9NssmdxP+ITYR+oB8Hiki1NACB0IdR4RScAyMTQSF82mfBESAx0Zsgiz43AvH1/Ci0x0MIIwQoAwswQHrSQO01GISgugBeBrNFzmNPYDUAPPHA2whI6GBZDpqT0V2F0GY8YSy7YPEFuL5xBicecIamdl1ANQV00hhsPHAr0wxkoCwNAIrFG+u0fAdD+AIXwF2bBUI5CPGSxHJXHh5eisWH0279/+zsUE5J6PvV9MXY5DxZ0PvgD1j6Rf7oBEm29mvAEnJ3HYqQmHS9HE4tJo6fQ95AVBtFBYuCPIzaqdv3u7eqG3DGSfYZiSkFldoXRgeEzX5iYFAzz2RiWMyiRrkd6r9zsnklUhVWhsPcjBIslGVQFCloDBXIvo0kfo+WuCkCajKRBpTrouwuBeEErZYPPAPjS0wGfM69qIFKvYzRX7aFFer1Wq2K1BBTTEK61FMfU04pBgDkrBGpYBNMxA53LJ/vurYQDqk7TBvSsvxJEJc+1HPY6gLQCPHhHeNJysS+WqaDPgWxm7M5FgO6AS3N7cehPE1irg58Ilmt1NbY85krgoJJuOCmUhiZTCxL4rDgYIL8Gz1YWwzJiJEAELmH1G8vIlqQxTH74inseC/IBu7lXAWWcqBkjoCFMef686gQQkNGzoGB9iKm5PwIb+OiDn6Zh8slX1+raTJZJVZTChxj7CTMLzpiShgJ9MRjELBECwAr8PYRNrR2lTQrSNjJp2+QQaZOm0oaVs5YLfL1z/RBBmM7axgV1WIahgqDnkwhGI7rJ2ALw3zn09wB/Ipzlhyh52Cr7t22O74tbdnxLRbAsKRidbHKLSw/YFhzFtrHh6LpGNeoQnHpE27AtYmHTtAyTUB2XHWSBG8SKPk1C340O8p79cAxhyEOBXFZ+4y5ay8WMq4loglwssFWwTZPshataSuvXRBNBSxnu7jbBNPO3DcORO51zn7vRYn1Iaq9CfrFGUNfFMezhTtlPQUmGfDzxeZ8nOcK+MJuvA0EzmaRecY3tXTI2EcuOF8FF5AaxSBtXKd86Eb+UNlMWsluTbhdvFm/Z8qD0Zh+8xvKwnjphnR5OOw4KU0tVAGujFgYtwNSmpmaJNMxCGKHpgG4QS8OGAQsw4yjcpSya1wBcGK02wC6uyehqs4hmqrVMBFf7iahohDJWNnaObUwVgs5K6aVQxTB4qexdH2huxh+PIKLNtmpsttW6x+3DMovFsIwsLLukSano9WwF7Vn88DPE/b9ulv1TFgyTUUX2VzWZl9paJ/kqb8oq1diT4ziYOCBWhxiEYNqQ866fzZNp0FcL/5nITs4r80oHBEE+5sEDGe3nD5Wei050oWqd6oq/CsWbzSAM8iGkKLzZ3QBg3etx5Uqg+Iu09Jcie1aHiOK1RHJn/qAsRLcOspC9FLykqA+Ac20lahcZUUtOkNaUo11sEUIxOjeQwSY2v6sQFLnW9SN5KbU2OXShW5FQsoN4fsCpgOYPLh6ukkjVPYga6xdWR/AGm+JanViyRmGN3Sm3bBK1mpH+gyjmfmFrvQAf8ajvs52JibuFPIJpF9TP3ZM83pYI9+L4fMgCpakxQnMtPfux0DJvkD2ZY6kZ4h1OH13jgqsYiwzqHHWz8t2sVBeCZJtABDcptQiFKEl00B94QdI+ukbWdJemn1auP8SGEh+AQDaqQL4eqS4dsFKDeXfOYxW79ZpCPGqymHi05zK+tpGyt0oUnXiNIqXrwuPkLiscEDStAm+3BG8V195mXIXm5qj17tRR1tO/OIWwXaftN7K0bgT7hUJ9sRL1YQPUh/cE9TauZ93NW0C6zk8eF+jjGyCcTRnk4xui8cdzH3uRxGb5Bbyjf6nDP87g1/aDf7wzgT8KuEt6niYRzCMhv3RDTXC39vLrr9hQPF/Nn8Y1/zLa7F/itLUM8dENGYRWOrxwLC9UQ7vgkzZz3i37FnecVl0t4zSOPK7JmDeTMb/Z3MVtChl3bI0SWOc4NiGGrlnkf0jmdX/6Jx5cMl/thaWuVW1tFl8sN8l4gEp7n2WxJ2y+lHmp5X2c7m0tkFZvZCK1aanctqHb26F8mYWmfhhDZDqRycHmEerl7pRrta2Icyc3k2JKTaG9MRNejFGGTYllW9TWTcPWaZYwAOPSiGObpk50g+xPFbZmlzbA/OJwZnsPtntu9jBKRTG124VsqXeOSm3eGJ47bLGuWH8cceWsElTdqF+Jvy9U/H2Z7iq8rMVhYes/7JKumrjRUpJprQNj8s35mbap/MzqoykHJb627CfcUuJLfWqa6bp5erAxz7726Ew1+56fQLqdE2pLvVFqg1dqTZrVW3mgqfHRNWrb+WGm+3l0bTNVqYqyxPzWynk33ldre2c3c8/IH7XVDgfVzO2Ivnub0z+t41joQyRYYHoQ7ASlz/Lt4ua0UHRwIDFUjHyFy9aMYojW9klvZKck2mui9B7HJLQOxbpDNQPoou1olggoij8CbbSoRjG8cEzR8XH447u3jRgkSOTOGFGb7LLdeyyO6ZjH3gheAXUjRiSxl5xI2EWVFfWbEqL+oVzoRk0rzbDaBxnWPWZDoGA63mfr70YI0X6aupa4V3XT20E3c73zjsHR0X/+9i/0AC5v/4nMDnl4TM7+u9qO3o+V77b/vElLpDOr6smgiZ4MjuO/lKYogrJJXfZ2ar8rddnbba3TmLKEe2HoMzeo5FOra63iV+huJb9ayAYS9bUBamz+3kD6pdPSGqnuZ8WXzq6UFm7lYVVovluxCL1DYIiZLhyMjQmMHYGRLhx8wnQgvz/4BQ9G8CS+jJja298dpi3L9jtEjFL9iKr0ZXme8YxdiiN3jbBSG073ByErzZ4fCSExOzSD21VnZvc8Cy3jRr7qXXMguhbnXi82B7raOejXizs9k9I8IO0NbbuC7bbD5nVs502xnR/hO2j3BNyVp3bH6aEF9BESJ0heL+QGXRW32WbYKkd4ZweeCa+65bX0XMEr9rz3SM+o5Ak9iIzV953aegdjgxiOTrCFdWwYd/GtlfEempCdTOxioQuv53LHdp0+zLc4qapGzFf4qGaEvKFS3OSKrZCSIx1xjtS2DE23bWIb9j1Sgm7NH6zYomcRh/kHnjtlUSnpXXqDvof/LtA5Uu+Egjx1L9i3f9aFK/4VnYI//stDeJy+//4ExWlyfEUet5QdL49gZyW5i9Q4j+Wkq9kR+cM8MUxjsPwNLX7NnqVLI/WLPVork1q2Pbs+z25Qtb9L1O/vbJbgk4j9NGXBdUl42UMpt8EKuUHUPEUPlPQeFiQHgsuPs2yTXN7z/4UmhOY42U83VIV2WvzZFXGf/UDjp/8FUEsHCLGVxe7YDgAAUFIAAFBLAQIUABQACAAIAJx7dUNFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgAnHt1Q7GVxe7YDgAAUFIAAAwAAAAAAAAAAAAAAAAAXgAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAABwDwAAAAA=" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" />
+
 
 +
<ggb_applet width="750" height="450"  version="4.2" ggbBase64="UEsDBBQACAAIAEZ8dUMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACABGfHVDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1c247jthm+Tp6CcIFgNxl7RFHUIZlJ4OxmkwCzB2Sn2zRNEcgWbTMjS44ke+xpCuSy+xS9adE36AvkAfYd+iT9SUqyDrbG8ngODYpshpZE8fD9p+8naZ98tpz6aMGimIfBaQf3tA5iwTD0eDA+7cyTUdfufPbp+ydjFo7ZIHLRKIymbnLaMXp6Z/0eXPVMTbzMPbiyiaePiNm1HTzoGoxZXcekTtch5sijBvyzSAehZcw/DsIX7pTFM3fIXg8nbOqehUM3kW1OkmT28fHx5eVlL+u9F0bj4/F40FvGXgfByIP4tJN++BiaK710SWR1XdPw8bfPz1TzXR7EiRsMWQeJWc35p++/d3LJAy+8RJfcSyanHYdaHTRhfDyBaVoGTPNYVJrBXGdsmPAFi+HVwqWcczKddWQ1NxDP31OfkJ9Pp4M8vuAei047Wo9YDsEaMQxbt6htQh9hxFmQpHVx2udx1trJgrNL1az4pFDuoCQM/YErWkTUQT//jHRN19CRKLAqdChMUz3S1D2NqEJXhaEKquoY6nVDVTVUHUPVMUBoCx7zgc9OOyPXjwFEHowiEGB+HScrn8khJdEcrtfz149gljG/grrQXQcp0GHoR9qRocn/1awLU8SFDlV7u/eHs94cw9mtN73N9NIb6/5I1h8xSbk/fUt/dkGAWEjnZ4SFWGRBkBAIloIRhZFemurSkgXWVIHTh7b4IxXBvNFccuwwLUiKakfyn/y/Lqu775K0kthWBWnRo2k09Kg6OGyHhuZYB+/SMe0jbGDZqWXQWqeWVnItmV9RJU7LJuwPhsTJceb4TtIBoXgi6qbeIGHTWAyRONIBIowo2JFpgb+iCDtQWMKedIQpMihcYhuZorQQESZkIIJsJOphgqSbozb8MaR5mYhCW+KmpewMEQNRgrB0jgYCFJB0sICJTqAGpYjCS6J3LLolJjJMuCA2MmCAwrVawsoJvAfX0LmOCEZEvIstpJvI1JEl3DM2hNc2bTF2aFRHpoZM8Sr4Z/DNyi/DGzYiYjZgerMw5jm4E+bPcqlIHHkwmycl7IZTL/uYhJXaXji8+DzHOn3C3DgpVoPotI6BKlqVQuR7J747YD4QiddCERBauL5wk7KHURgkKFMCXd0bR+5swofxa5Yk8FaMfnQX7pmbsOUzqB1nfcuuZeQ+YfOhzz3uBm9AS0QTokGUB3Lh+LNATi1H9TIMw8h7vYpBddDyOxaFMADH7plUs3XimBpcOGASq+wR7tmWgSFGU9OwbA2cdjx0hdJT0tNNx9JMamPbdjTobLX5ETZU12yRT81dsjiDfxwJo0uBFRdfx5+H/vrWLORB8sSdJfNIsjKwjUhMqh+MfSaxlbEL+M3wYhAuXytQiWrrfDVj4hU5gMH4SeiHEQKT1ClMcpyWA1XKOmJkeS3h78aqGMgiFRT38irY0WUdWQ5UKWuB5NXo0snibKZYy3risfQ3MKGiZkq1Oe18x3gCLgXFHTQPeHKm7r77BfSVDy/SeaevvphPB6B8aQvl1vHG1r/ww2As3VGp+R0bFxMBPhcn3wrOTC3Nckyim5Zj2I5pduSjPwqip1N1cT5hiStuUJ1Qx7YsCn91x7aVOlcU+eSCRQHzlboGoDHzcB4r+1mPYR6zV24y6QfeN2wM83jlCuebwEirNT025FPQJXU/FY8rtOf3MHN112PjiGXQ+ZJtK+HJp1rRdmq3ZVPPonD6dbA4B9VUD3NrBbNM3AjUFQYhAC8P7+Q4m+xJPIz4TNgHGkCsuGBrEwAIXYg0XtEHADIxNDKUTSY8ERIDnRmzyHMjMG/fn0NLDLQwQkD+IcqM4UYHufNkEoLiAngRyBq9gDlN3QD0wANfIyyhhyEPMiWdvwyji3jCWHLOlglyB+ECajzlDEntvIDXELyLpnDhgUOBfjgDZWEASCTSo1//EQDlD1AIf2EWDOUoxGMWy1F5fHwhGhtHv/77179DNSGpF3PfF2OX82BB74PfYe0T+acfINHW6xlPwNd5LEZq0vF6NLGYNDqDvsesMIgeEgN/GrFJtet3bzc35E6R7DMUUwoqsyuMDgyf+cLEpGCYz6aQy6BEuh7pvXKzey5RFVaFwsGPECvWVFBVKGgNVMi9jCZ9jJa7KgBpNpEGleqg764E4gWtlA0+B+BLd0d8ybyqgUi9jtFStYdWaXmlEmKV/olpCNdaCmPqbsUgwJwVAjUsgvmUgc7lk333VsIBr87TBvSsvxJEJc+1HvY2gLQCPHhHeNJ6sS9SVNDnQDYzdZciPvfApbmDOPTnCaTp4CeCdZquxpaGXEg/BHDwkm44KZSGJlcVJPBZdTBAfgWerSyGdcRIgAdcQOoby8iWpDFMfviKex4L8gG7uVcBZZypGSNgIUx5/vzVGSAgo2dBwYYQU3N/BDbw0Qc/zcPkk6+uVNlOlklVlLiHNX0/YWbBGVPSUqAvR6OYJUIAWIG/h7DF+sdO0iYFaRuZtG1yE2mTttKGvFnLBb7duX6IIExnbeOCOqzDUEHQy1kEoxHdZGwB6O8S+nuEPxHO8kOUPO6U/dt1ju+LO3Z8a0WwLCkYnTS5xbUH7AJHcbBFNAKc1zA0DTiK8oi2ZmIgL8QyTUo0aK/kIAvcIFb0aRb6bnQj7zkMpxCGPBTIrPIbd9VZ5zKuJqIJcrHAVsE2T7IHrmopfb8mmghaynB3rxNMO3/bMhy58yX3uRuttoek7ibkV1sEdVUcwx7ulP0UlGTIpzOfD3mSI+wLs/k6EDSTSeoV19jeBWMzkXa8DM4jN4jFinGV8m0T8StpM2UhuzXp9nGzeMuWB7WbffAWy8N66oR1enPacaMwtVYFiCmQNVBMbGJhotlKE3DPxJhaloNNYmu6helBuEtZNG8AuDDabIB9XJPRZbOIFqq1TASX+4moaIQyVrZ2jl2BlYDQ2Si9FKoYBi+Vve8Dzc344wFE1GyrRrOt1j3uENIsFkMaWUi7pEmp6PV8A+1Z/fAXiPt/bZb9GQvGyaQi+8uazEttbZN8lTdlL9XYk+M4mDggVocYhGDakvNun82zeTBUif9CLE4uK/NKBwRBPubBIxntl4+VnotOdMWRTJNY4JUNInywXoMibgZhlA8hRSG+xgCKgQFIjfIkUPtlWvlLsXZWR4jirTxyZ/qgDES3mgxkL/UtqeEjYFTX0rDzjIYlR0hry8DObwfiJq6+K8aKOuv6gXyQyjxumsZWJJTsIJ4fcCqg5aPzx5skUjV+8cb2tOkAtt4Uteq0kbUKWuxemWObmNSO0t+IQO4XlLYL8AmPhj7bmXa411BDMO2C+rl7UsO7EuFeDJ6PWaA0NUZoqaWHOlZa5g2yO0ssNUM8w+mtK1xwFVOxPrpE/ax+P6vVhxDYJRCfTUotQk3LIbplmPCApH30jazpPk0/bcwuxG4RH4FAGlUgzzaqiQFWarDsL3msInM9ED9pkyo82TNJr22T7K0SRSdeI0Bp1neYlckKwwNNq8DbL8FbxXXQjKvQ3By1wb06yvriLk4h7G5g5beSObfC/VzBvtoI+7gF7OMHAnsX1xbV8xB/m0jXCcrTAn+MgXG2pZBPdw8XrTjk4fzHXiyx5foB3tHD1PGfZvhr++E/3ZnCHwTdNUFPFwnMA0G/dkStgLf2cu2v2Vjc30yhpjUPM2n2MHHaWgb55JZMQiudTjiUH6rDXXBLzbz3mp2Je1443SzkNJQ8rQmZtxMyvyUhp8sTdypl3LMs6lDbhqcUa5D8/A8Jve5S/8CDC+ar7a7Uu6rdy+KD9T4YD1Bpe7Ms94Qt10IvtbyP372rLGnzXiVS+5JK+IZuXw/lqyw6DUMRnI7k+l/7IPVqd9q12VjE0ZLbWWfSDZVDNC52F8OUQbGNdVvTLA1bTr6oZDs6xrplOrpNiUmdvenCtWtMDTi/vDm9fQBbOrd74KSimdrdQrZWPEctcN4anjtso9aTkEPmz2qZqh8NKxH4pYrAr9Kdg1e1SCyM/YddFq1mbrSWZPrWDaPy7TmarqkczebjJzda/rpmV+GOlr/Up7brXbfPDxpX27cej6muweenjO7mFNpab5Ta4I1ak52l2nRoqfXxNOB/+YGlh3k8rZmrVEVZon5b5bwb8au1vbObeWDsj9rqEBzVzOsRffc2539az7HQh0jQwPSw1xFK7+Vbwu15oejghsxQUfINLlsziiFa22eJIzsJ0d0Spfc4CqH1qEUcyzYsw6SmadtZJmbZ2AFmCWkYoWJt+1D88d3bVgwSJHJvjKhLdtn0PRTHdMxDbwdvgLoVI5LYS04k7KLKioZtCdHwplzoVk1LpV3YvpFhPWA2BAqm4302AG+FEO2nqVuJe1U3vR10M9c77xAcHf3nb/9Cj6B4+09k9sjjQ3L239Sm9H6sfLdd6CYtkc6sqiejNnoyOoz/UpqiCEqTuuzt1H5T6rK329qmMWUJD8LQZ25QWVCt5lrFr8ndyQJrYTmQqK8GUKP5uwHpF0tLOVLdz4ovll0qLbyWh1Wh+W5DEnqPwBAzTRyMxgWMHYGRLhx8wnwkvyP4BQ8mcCe+iBiP28F0Tdp+j4hRqh9Qlb4szzNesAtx8K4VVmrL6eEgZOn0kAiJ2aEFXG46ObvneWcZN/Kst3romfbk15xrce7NqjnQ1c46v1nd68GU9gFpb2i7FWy3Hijfiu2yLbbLA3zP7IGAu/Hs7jQ9t4A+QuIUyZuV3KGr4rZohq1ykHdxw5PhVbe8lZ4reMWu9x7LM+qLJLQJ/T2OoHT1ntjB03TLtAzdxOLXC+78iynTPRQhO57Yx0IV3izlju02dVhe46OqCrHc4KLa8fGWOnGbCVthRY70dJ1gSm0C8tYgFBkPRwn6NXewYYueRRzmH3junEWlNe/SE/Q9/HeOTpF6JhTkzD1n3/5JF574F3QM7vjPj+F2+vz7IxSna+MblnFLi+PlEeysJPexMs5jOenq4oj86Z0YpjFa/0gWv2LP08xI/SaP1smklu3Obl9mN6ja3iXqJ3aaJfgsYj/NWXBVEl52U8pttEFuEDSP0SMlvccFyYHg8uMs10ku7/n/QhNCc5zs1xmqQjsu/rKKuM5+fvHT/wJQSwcIRiDdoekOAAAuUgAAUEsBAhQAFAAIAAgARnx1Q0XM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACABGfHVDRiDdoekOAAAuUgAADAAAAAAAAAAAAAAAAABeAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAIEPAAAAAA==" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" />

Version vom 21. November 2013, 15:33 Uhr

Mit Hilfe dieser Animation läßt sich die Zeigerdarstellung nachvollziehen. Wer sich erstmal die Grundlagen von Sinus und Cosinus am Einheitskreis anschauen möchte, kann dies bei der Animation "Sinus und Cosinus im Einheitskreis" tun.

Die Zeit kann man mit dem Schieberegler verändern oder die Animationsgeschwindigkeit größer als Null einstellen.

An der Spitze des Zeigers kann man seine Länge verändern. Die Drehgeschwindigkeit ω des Zeigers kann man am oberen Schieberegler einstellen.

Bitte installiere Java, um diese Seite nutzen zu können.