Lernzirkel: Grundlagen des elektrischen Stromkreises: Unterschied zwischen den Versionen

Aus Schulphysikwiki
Wechseln zu: Navigation, Suche
((W2b) Wirkung: Magnetfeld (Elektromagnet/Elektromotor))
((W2b) Wirkung: Magnetfeld (Elektromagnet/Elektromotor))
Zeile 239: Zeile 239:
 
*Stecke nun den Eisenkern in die Spule und versuche damit Büroklammern aufzuheben. Was passiert, wenn du das Netzgerät ausschaltest?
 
*Stecke nun den Eisenkern in die Spule und versuche damit Büroklammern aufzuheben. Was passiert, wenn du das Netzgerät ausschaltest?
  
 +
 +
*Baue nun den Schalter in den Stromkreis der Spule ein. Jetzt kannst du den Elektromagneten an- und ausschalten.
 +
*Stelle den drehbaren Magneten in die Nähe des Elekttomagneten. Was passiert, wenn du den Elektromagnet anschaltest?
 +
*Versuche den Elektromagnet so an- und auszuschalten, dass der Magnet sich dreht! An welchen Positionen des Magneten musst du anschalten, am welchen ausschalten?
  
 
;Folgerung
 
;Folgerung
 
*Innerhalb der stromdurchflossenen Spule bildet sich ein Magnetfeld. ([[Lernzirkel:_Grundlagen_des_elektrischen_Stromkreises#.28W2a.29_Wirkung:_Magnetfeld_.28Spule.29|Vergleiche Versuch (W2a)) Die Büroklammern werden vom Magnetfeld zu den stärkesten Stellen des Feldes gezogen. In diesem Fall in das Innere der Spule.
 
*Innerhalb der stromdurchflossenen Spule bildet sich ein Magnetfeld. ([[Lernzirkel:_Grundlagen_des_elektrischen_Stromkreises#.28W2a.29_Wirkung:_Magnetfeld_.28Spule.29|Vergleiche Versuch (W2a)) Die Büroklammern werden vom Magnetfeld zu den stärkesten Stellen des Feldes gezogen. In diesem Fall in das Innere der Spule.
*Das Magnetfeld der Spule kann auch den Eisenkern magnetisieren. Er bekommt dadurch einen Nord- und einen Südpol. Man hat einen Elektromagnetengebaut, den man an- und ausschalten kann!
+
*Das Magnetfeld der Spule kann auch den Eisenkern magnetisieren. Er bekommt dadurch einen Nord- und einen Südpol. Schaltet man den Strom aus, so ist der Eisenkern nicht mehr oder nur noch sehr wenig magnetisiert. Man hat einen Elektromagneten gebaut, den man an- und ausschalten kann!
 +
 
 +
 
 +
*
  
 
=='''(W3 / L2)''' Wirkung: chemisch / Leitfähigkeit: Flüssigkeiten==
 
=='''(W3 / L2)''' Wirkung: chemisch / Leitfähigkeit: Flüssigkeiten==

Version vom 6. Dezember 2015, 22:57 Uhr

(E) Energietransport

Versuchsaufbau Wirbelstrom Dynamo.jpg

Material

  • Generator mit Handkurbel (Dynamot)
  • 3 Kabel
  • Schalter
  • Glühlampe (12V/30W) mit Fassung
  • Wasserpumpe
  • 3 Schläuche
  • Wasserhahn
  • Wasserrädchen
Aufbau
  • Schalte die Pumpe des Wasserstromkreises an. Öffne und schließe den Hahn.
  • Drehe an der Kurbel des Generators. Öffne und schließe den Schalter.
  • Ergänze die Tabelle und übertrage sie ins Heft.

Wasserstromkreis

elektrischer Stromkreis

Die elektrische Ladung fließt im Kreis.

Die Pumpe treibt das Waser an.

Das Wasser treibt das Rädchen an.

Die Energie kommt von der Pumpe und wird vom Wasser zum Rädchen transportiert.

Der Schalter unterbricht und schließt den elektrischen Stromkreis.

Nur bei geschlossenem Stromkreis leuchtet die Lampe.

(A1) Antrieb: chemisch

Material
  • 6 5-Cent-Münzen
  • 6 verzinkte Unterlegscheiben
  • Papiertaschentuch
  • 1 Kartoffel
  • 1 Messer
  • 1 Schneidebrett
  • 1 Voltmeter
  • 7 Kroko-Kabel
  • Leuchtdiode
  • Flachbatterie 4,5V
  • Flachbatterie, demontiert
Aufbau
  • Schneide aus den Kartoffeln 6 Stücke die ca. 3cm x 3cm x 3cm groß sind.
  • Mache in die Kartoffelstücke ohne sie durchzuschneiden je zwei parallele Schlitze und stecke jeweils eine verzinkte Unterlegscheibe und eine 5-Cent-Münze hinein.

Jetzt sind die Batterien fertig! Die Kupferhaltige Münze ist der +Pol und die verzinkte Scheibe der -Pol.

  • Miß mit dem Voltmeter die Spannung an einer Batterie, indem du die Messkabel an die Pole hälst. (Die Spannung gibt die "Antriebsstärke" der Batterie an.)
  • Schalte alle 6 Batterien hintereinander in Reihe zu einer Batterie. Dazu verbindest du den +Pol der ersten Batterie mit dem -Pol der zweiten, den +Pol der zweiten mit dem -Pol der dritten und so fort.
  • Miss die Spannung zwischen dem -Pol der ersten und dem +Pol der letzten Batterie!
  • Verbinde nun die Leuchtdiode mit der Kartoffelbatterie. Durch die Leuchtdiode kann der Strom nur in eine Richtung fließen. Wenn sie nicht leuchtet, dann vertausche die Anschlüße!
Erklärung

Offensichtlich treibt die Kartoffelbatterie den elektrischen Stromkreis an. Aber wie?

Das liegt an den unterschiedlichen Metallen Kupfer und Zink. Sie haben eine unterschiedliche "Vorliebe" für Elektronen. Zink "gibt gern Elektronen ab", Kupfer dagegen "nicht so gern".

(A2) Antrieb: elektromagnetisch

Material
  • Spule (12000 Windungen)
  • Eisenkern
  • Permanentmagnet
  • 2 Kroko-Kabel
  • eine Leuchtdiode
  • Generatormodell
Aufbau
  • Stecke den Eisenkern in die Spule. Bilde mit der Spule und der Leuchtdiode einen Stromkreis.
  • Halte den Nordpol des Magneten an den Eisenkern und ziehe ihn wieder weg. (Um das Leuchten der Diode zu sehen, sollte es nicht zu hell im Raum sein.)
  • Probiere auch die andere Seite des Eisenkerns aus. Ebenso den Südpol des Magneten.
  • Befestige mit den Klemmen den Generator und die Kurbel.
  • Drehe die Kurbel des Generators
Erklärung
  • Der Magnet ändert die Magnetisierung des Eisenkerns. Ändert sich die Magnetisierung in einer Spule, so wird in der Spule ein Strom angetrieben. Den Effekt nennt man "Induktion". Ohne Veränderung kein Strom!
  • Beim Generator bewegt sich der Magnet auf den Eisenkern der Spule zu und wieder von ihm weg. Dadurch ändert sich die Magnetisierung und es wird ein Strom in der Spule induziert.

(W1) Wirkung: Wärme

Material
  • Verschiedene auseinandergenommene Haushaltsgeräte (Fön, Bügeleisen, Glühlampe,...)
  • Netzgerät
  • 2 Kabel
  • Brett mit 2 Nägeln
  • dünner Kupfer- oder Eisendraht
  • Hochstromnetzgerät
  • ein langes Kabel
Aufbau
  • Lasse durch einen dünnen Eisendraht Strom fließen!
  • Schneide dazu einen ca. 20cm langes Stück Eisendraht ab und befestige es an dem Halter. Den Halter wird im Steckbrett befestigt. Nun kannst du mit zwei Kabeln das Netzgerät anschließen. (Alle schwarz markirten Striche auf dem Steckbrett entsprechen einem im Inneren verborgenen Kabel.)
  • Drehe die Spannung am Netzgerät vorsichtig hoch und beobachte.


  • Schließe statt dem Eisendraht eine kleine Glühbirne an!

Schau dir an, wie ein Fön und wie eine Heizplatte Wärme produziert.

Erklärung
  • Die Elektronen fließen im Draht vom -Pol zum +Pol. Dabei stoßen sie an die Atome des Eisendrahtes. Deshalb fangen die Atome des Eisendrahtes an zu "wackeln". Dieses Wackeln bedeutet, dass der Draht immer heißer wird. Sogar so heiß, dass er anfängt Licht auszusenden.
  • Mache dazu auch eine Zeichnung ins Heft.


  • Schreibe auf und mache eine Zeichnung, wie eine Heizplatte funktioniert.

(W2a) Wirkung: Magnetfeld (Spule)

Material
  • Hochstrom-Netzgerät
  • 3 Kabel
  • Minikompass
  • Spule im Kunststoffrahmen
  • Eisenfeilspäne
Aufbau
  • Verbinde mit einem langen Kabel den Pluspol und den Minuspol des Hochstromnetzgerätes. Drehe dann die Regler für die Spannung (U) und Stromstärke (I) maximal auf. Die rechte Anzeige zeigt jetzt "20A" an.
  • Untersuche mit dem Minikompass die Umgebung des Kabels.
  • Vertausche auch die Anschlüsse am Netzgerät.


  • Stelle den Minikompass in die Spule.
  • Schließe mit 2 Kabeln die Spule an das Netzgerät an.
  • Vertausche auch die Anschlüsse am Netzgerät.
  • Streue Eisenfeilspäne um die Spule herum, um das Magnetfeld zu untersuchen.
Beobachtung
Folgerung
  • Um einen elektrischen Strom befindet sich ein magnetisches Wirbelfeld.
Bei einem Wirbelfeld verlaufen die Feldlinien "im Kreis" und haben kein Anfang und kein Ende, so wie das bei Dauermagneten der Fall ist.
Die Richtung der Feldlinien erhält man mit der "Rechten-Hand-Regel": Daumen in technischer Stromrichtung von + zu -. Dann zeigen die Finger die Feldlinienrichtung an.
  • Das Feld einer Spule mit vielen Windungen ist fast ausschließlich in der Spule und homogen.

(W2b) Wirkung: Magnetfeld (Elektromagnet/Elektromotor)

Material
  • Netzgerät
  • 2 Kabel
  • Minikompass
  • ein Stück Eisen
  • Büroklammern
  • Netzgerät
  • 3 Kabel
  • Schalter
  • Spule mit Eisenkern
  • drehbar gelagerter Magnet (Kompass)
Aufbau
  • Wickle ein Kabel so oft wie möglich um einen kurzen Bleistift und schließe das Kabel an das Netzgerät an.
  • Drehe die Spannung am Netzgerät auf. Kannst du mit dem gewickelten Kabel eine Büroklammer hochheben?
  • Wickle das Kabel nun um das Eisenstück und wiederhole den Versuch.


  • Schließe die Spule ohne den Eisenkern an das Netzgerät an und drehe die Spannung hoch.
  • Wie reagieren die Buroklammern auf die stromdurchflossene Spule?
  • Stecke nun den Eisenkern in die Spule und versuche damit Büroklammern aufzuheben. Was passiert, wenn du das Netzgerät ausschaltest?


  • Baue nun den Schalter in den Stromkreis der Spule ein. Jetzt kannst du den Elektromagneten an- und ausschalten.
  • Stelle den drehbaren Magneten in die Nähe des Elekttomagneten. Was passiert, wenn du den Elektromagnet anschaltest?
  • Versuche den Elektromagnet so an- und auszuschalten, dass der Magnet sich dreht! An welchen Positionen des Magneten musst du anschalten, am welchen ausschalten?
Folgerung
  • Innerhalb der stromdurchflossenen Spule bildet sich ein Magnetfeld. ([[Lernzirkel:_Grundlagen_des_elektrischen_Stromkreises#.28W2a.29_Wirkung:_Magnetfeld_.28Spule.29|Vergleiche Versuch (W2a)) Die Büroklammern werden vom Magnetfeld zu den stärkesten Stellen des Feldes gezogen. In diesem Fall in das Innere der Spule.
  • Das Magnetfeld der Spule kann auch den Eisenkern magnetisieren. Er bekommt dadurch einen Nord- und einen Südpol. Schaltet man den Strom aus, so ist der Eisenkern nicht mehr oder nur noch sehr wenig magnetisiert. Man hat einen Elektromagneten gebaut, den man an- und ausschalten kann!


(W3 / L2) Wirkung: chemisch / Leitfähigkeit: Flüssigkeiten

Material
  • Netzgerät
  • 3 Kabel
  • Lämpchen mit Fassung
  • 2 Elektroden (Eisennägel)
  • 1 Becher
  • Salz
  • destilliertes Wasser
Aufbau
Beobachtung

(L1) Leitfähigkeit: feste Stoffe

Material
  • Netzgerät
  • 3 Kabel
  • Glühlampe mit Fassung

(L3) Leitfähigkeit: Gase

Lehrerversuch

evt. was mit der Glimmlampe?

Material zur Leitfähigkeit von Gasen für den Heftaufschrieb

Blitze erzeugen mit der Influenzmaschine