Energiezufuhr und Energieabgabe bei Schwingungen: Unterschied zwischen den Versionen

Aus Schulphysikwiki
Wechseln zu: Navigation, Suche
K (Übersicht)
(Übersicht)
Zeile 103: Zeile 103:
 
{|
 
{|
 
|valign="top"|
 
|valign="top"|
;gedämpfte Schwingungen: verlieren Energie an die Umgebung, dabei nimmt die Amplitude ab. Bei allen realen mechanischen Schwingungen tritt Reibung auf, weshalb alle Schwingungen auch mehr oder weniger stark gedämpft sind.
+
;gedämpfte und ungedämpfte Schwingungen
 +
:GedämpfteSchwingungen verlieren Energie an die Umgebung, dabei nimmt die Amplitude ab. Bei allen realen mechanischen Schwingungen tritt Reibung auf, weshalb alle Schwingungen auch mehr oder weniger stark gedämpft sind.
 
|
 
|
[[Datei:Schwingungen_schematisch_nach_Energiezufuhr_gedämpft.png|thumb|none|350px]]
+
[[Datei:Schwingungen_schematisch_nach_Energiezufuhr_gedämpft.png|thumb|none|350px|Energieflußdiagramm einer gedämpften Schwingung.]]
 
|-
 
|-
 
|valign="top"|
 
|valign="top"|
;ungedämpfte Schwingungen: ohne Energieabgabe gibt es in Reinform nur als abstrakte Idee, da es eine reibungslose Bewegung nicht gibt. Nur durch ständige Energiezufuhr kann erreicht werden, dass die Energiemenge der Schwingung, und somit auch die Amplitude, konstant bleibt.
+
:Ungedämpfte Schwingungen ohne Energieabgabe gibt es in Reinform nur als abstrakte Idee, da es eine reibungslose Bewegung nicht gibt. Nur durch ständige Energiezufuhr kann erreicht werden, dass die Energiemenge der Schwingung, und somit auch die Amplitude, konstant bleibt.
 
|
 
|
[[Datei:Schwingungen_schematisch_nach_Energiezufuhr_ungedämpft.png|thumb|none|350px]]
+
[[Datei:Schwingungen_schematisch_nach_Energiezufuhr_ungedämpft.png|thumb|none|350px|Energieflußdiagramm einer ungedämpften Schwingung.]]
 
|-
 
|-
 
|valign="top"|
 
|valign="top"|
; erzwungene Schwingungen: Hier wird eine Schwingung periodisch angeregt und so auch die Frequenz der Schwingung festgelegt. Je nachdem wie gut die Anregungsfrequenz "paßt", nimmt die Schwingung mehr oder weniger Energie auf.
+
; freie, erzwungene und angeregte Schwingungen
 +
: Bei einer freien Schwingung wird von Außen gar keine Energie zugeführt. Man beeinflußt die Schwingung nicht.
 +
: Bei einer erzwungenen Schwingung wird durch eine periodische Anregung die Frequenz der Schwingung festgelegt. Je nachdem wie gut die Anregungsfrequenz "paßt", nimmt die Schwingung mehr oder weniger Energie auf.
 
:Beispiele sind Vibrationen beim Auto, die bei bestimmten Geschwindigkeiten auftreten.
 
:Beispiele sind Vibrationen beim Auto, die bei bestimmten Geschwindigkeiten auftreten.
 
|
 
|
[[Datei:Schwingungen_schematisch_nach_Energiezufuhr_erzwungen.png|thumb|none|350px]]
+
[[Datei:Schwingungen_schematisch_nach_Energiezufuhr_erzwungen.png|thumb|none|350px|Energieflußdiagramm einer erzwungenen, gedämpften Schwingung.]]
 
|-
 
|-
 
|valign="top"|
 
|valign="top"|
; angeregte Schwingungen: Die Energiezufuhr erfolgt in der Eigenfrequenz der Schwingung. Eine angeregte Schwingung entspricht daher einer erzwungenen Schwingung in der "passenden" Frequenz. In diesen Fällen wird der Dämpfung einer Schwingung durch Energiezufuhr entgegengewirkt.  
+
:Erfolgt die Energiezufuhr in der Eigenfrequenz, spricht man von einer angeregten Schwingung. Eine angeregte Schwingung ist also einer erzwungene Schwingung in der "passenden" Frequenz.
 +
:Durch die Energiezufuhr wird die Dämpfung quasi aufgehoben, aber die Frequenz nicht vorgegeben. Die Schwingung verhält sich wie eine freie, ungedämpfte Schwingung.
 
:Beispiele sind Kinderschaukeln, die Unruhe oder das Pendel einer mechanischen Uhr und der Schwingquarz bei einer Quarzuhr.
 
:Beispiele sind Kinderschaukeln, die Unruhe oder das Pendel einer mechanischen Uhr und der Schwingquarz bei einer Quarzuhr.
 
|
 
|
[[Datei:Schwingungen_schematisch_nach_Energiezufuhr_angeregt.png|thumb|none|350px]]
+
[[Datei:Schwingungen_schematisch_nach_Energiezufuhr_angeregt.png|thumb|none|350px|Energieflußdiagramm einer angeregten, gedämpften Schwingung.]]
 
|-
 
|-
 
|valign="top"|
 
|valign="top"|
Zeile 128: Zeile 132:
 
:Beispiele sind die Selbsterregung von im Wind wackelnden Blättern ("Espenlaub"), das Streichen einer Violinsaite mit dem Bogen oder die menschliche Stimme. Eine Uhr als Ganzes führt auch eine selbsterregte Schwingung durch, denn das Uhrwerk steuert selbst die Energiezufuhr.
 
:Beispiele sind die Selbsterregung von im Wind wackelnden Blättern ("Espenlaub"), das Streichen einer Violinsaite mit dem Bogen oder die menschliche Stimme. Eine Uhr als Ganzes führt auch eine selbsterregte Schwingung durch, denn das Uhrwerk steuert selbst die Energiezufuhr.
 
|
 
|
[[Datei:Schwingungen_schematisch_nach_Energiezufuhr_selbsterregt.png|thumb|none|350px]]
+
[[Datei:Schwingungen_schematisch_nach_Energiezufuhr_selbsterregt.png|thumb|none|350px|Energieflußdiagramm einer selbsterregten, gedämpften Schwingung.]]
 
|}
 
|}
  

Version vom 18. November 2016, 11:18 Uhr

(Kursstufe > Mechanische Schwingungen)

Beispiele

Erzwungene Schwingungen

Versuche

Zwei Stimmgabeln

Aufbau
Schwingung erzwungen Resonanz mit Stimmgabel.jpg
Beobachtung


Ein "großes" Fadenpendel

Aufbau

Ein 10kg-Gewicht wird an einem Haken aufgehängt. Mit einem kleinen Magnet ist eine Schnur an dem Gewicht befestigt. Zieht man zu fest, so lößt sich die Verbindung!

Schafft man es das Gewicht in Schwingungen zu versetzen?

Beobachtung
Schwingung erzwungen großes Pendel.jpg
Schwingung erzwungen großes Pendel Schnur mit Magnet.jpg


Schaukel anschubsen im Modell

Aufbau
Beobachtung


Ein Zungenfrequenzmesser

Aufbau / Beobachtung


Erzwungene Schwingung eines Federpendels

Aufbau
Beobachtung


Ein Ast wird zum Schwingen gebracht

Aufbau

Man hält einen Ast mit verschiedenen Zweigen und Blättern in der Hand und "wackelt" schneller oder langsamer.

Dann spannt man den Ast in eine Tischklemme und überläßt das "Wackeln" einem Elektromotor. Durch die Umdrehungszahl des Motors kann man verschiedene Anregungsfrequenzen einstellen.

Beobachtung
Ergebnis

Im Gegensatz zu einem einfachen Pendel kann der Ast kann auf verschiedene Arten schwingen. Man sagt, der Ast hat verschiedene Eigenschwingungen oder auch Schwingungsmoden.

Bei einer durch den Motor vorgegebenen Frequenz nimmt diejenige Eigenschwingung am meisten Energie auf, welche die passende Eigenfrequenz hat.

Schwingung erzwungen Baum Ast wackeln.jpg
Schwingung erzwungen Baum Ast wackeln Motor.jpg
Schwingung erzwungen Baum Ast wackeln Motor Exzenter.jpg


Versuch: Der Wackeltisch

Der steuerbare Motor mit verschiedenen Gewichten als Exzenter.

Übersicht

Je nach der Art der Energiezufuhr oder des Verlustes kann man Schwingungen in verschiedene Kategorien einteilen:

gedämpfte und ungedämpfte Schwingungen
GedämpfteSchwingungen verlieren Energie an die Umgebung, dabei nimmt die Amplitude ab. Bei allen realen mechanischen Schwingungen tritt Reibung auf, weshalb alle Schwingungen auch mehr oder weniger stark gedämpft sind.
Energieflußdiagramm einer gedämpften Schwingung.
Ungedämpfte Schwingungen ohne Energieabgabe gibt es in Reinform nur als abstrakte Idee, da es eine reibungslose Bewegung nicht gibt. Nur durch ständige Energiezufuhr kann erreicht werden, dass die Energiemenge der Schwingung, und somit auch die Amplitude, konstant bleibt.
Energieflußdiagramm einer ungedämpften Schwingung.
freie, erzwungene und angeregte Schwingungen
Bei einer freien Schwingung wird von Außen gar keine Energie zugeführt. Man beeinflußt die Schwingung nicht.
Bei einer erzwungenen Schwingung wird durch eine periodische Anregung die Frequenz der Schwingung festgelegt. Je nachdem wie gut die Anregungsfrequenz "paßt", nimmt die Schwingung mehr oder weniger Energie auf.
Beispiele sind Vibrationen beim Auto, die bei bestimmten Geschwindigkeiten auftreten.
Energieflußdiagramm einer erzwungenen, gedämpften Schwingung.
Erfolgt die Energiezufuhr in der Eigenfrequenz, spricht man von einer angeregten Schwingung. Eine angeregte Schwingung ist also einer erzwungene Schwingung in der "passenden" Frequenz.
Durch die Energiezufuhr wird die Dämpfung quasi aufgehoben, aber die Frequenz nicht vorgegeben. Die Schwingung verhält sich wie eine freie, ungedämpfte Schwingung.
Beispiele sind Kinderschaukeln, die Unruhe oder das Pendel einer mechanischen Uhr und der Schwingquarz bei einer Quarzuhr.
Energieflußdiagramm einer angeregten, gedämpften Schwingung.
selbsterregte Schwingungen
So bezeichnet man angeregte Schwingungen, bei denen die Steuerung der Energiezufuhr durch das vorgegebene System selbst geschieht.
Beispiele sind die Selbsterregung von im Wind wackelnden Blättern ("Espenlaub"), das Streichen einer Violinsaite mit dem Bogen oder die menschliche Stimme. Eine Uhr als Ganzes führt auch eine selbsterregte Schwingung durch, denn das Uhrwerk steuert selbst die Energiezufuhr.
Energieflußdiagramm einer selbsterregten, gedämpften Schwingung.

Links