Das Konzept der Energie (Energieträger und Potential): Unterschied zwischen den Versionen
K (→Energie) |
(→Systemveränderungen:) |
||
Zeile 121: | Zeile 121: | ||
In der Regel strömt aber Stoff von einem Gebiet in ein Anderes. | In der Regel strömt aber Stoff von einem Gebiet in ein Anderes. | ||
Sind die Potenriale unterschiedlich, gibt es einen Netto-Energiestrom von den beiden Systemen weg. | Sind die Potenriale unterschiedlich, gibt es einen Netto-Energiestrom von den beiden Systemen weg. | ||
+ | |||
+ | |||
+ | Bsp.: | ||
+ | |||
+ | Von dem warmen Wasser über das Thermoelement in die Lampe. | ||
+ | |||
+ | |||
+ | [[Bild:Thermoelement_Energiefluß_1.1.JPG|P = Energetische Stromstärke/Energiestrom]] | ||
+ | |||
+ | ==Eine mathematische Schreibweise== | ||
+ | |||
+ | |||
+ | [[Bild:Mathematische_Schreibweise.JPG|thumb|eine mathematische Schreibweise]] | ||
+ | Durch den Entropiestrom ändert sich die Entropiemenge. Die Stromstärke ist gerade die momentane zeitliche Änderungsrate der Entropie. Ableitung nach der Zeit. | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==Beispiele:== | ||
+ | |||
+ | 1. '''Luftballon''' | ||
+ | |||
+ | [[Bild:Luftballon_Modell.JPG|thumb|Ein Luftballon, aus dem Luft entweicht]]. | ||
+ | :Trägergröße: Volumen | ||
+ | :Potenzial: Druck | ||
+ | |||
+ | <math>I_E=I_v*p</math> | ||
+ | |||
+ | <math>\dot E= \dot V*p</math> | ||
+ | |||
+ | Wenn beim Druck <math>p</math> der Luftballon um das Volumen <math>V</math> kleiner wird, so verringert sich die enthaltene Energie um <math>\dot E= \dot V*p</math> | ||
+ | |||
+ | 2. '''Schokolade''' | ||
+ | |||
+ | [[Bild:Schokolade_Modell.JPG|thumb|Schokolade]] | ||
+ | |||
+ | :T: Stoffmenge | ||
+ | :φ: chem. Potenzial μ | ||
+ | |||
+ | <math>I_E=I_n*μ</math> | ||
+ | |||
+ | <math>\dot E=\dot n*μ</math> | ||
+ | |||
+ | 2 be continued... |
Version vom 16. Oktober 2006, 21:25 Uhr
Inhaltsverzeichnis
Energie
- Energie ist das Geld der Physik. Man bewertet damit Situationen.
- Es ist alles andere als selbstverständlich, daß wirklich sämtliche Situationen vergleichbar und in einer Einheit auch bewertbar sind.
- Energie ist eine Erhaltungsgröße, sie kann weder erzeugt, noch vernichtet werden.
- In der Regel ist die absolute Energiemenge eines Körpers uninteressant. Man interessiert sich viel mehr für die Energiemengen, die hinaus oder hineingehen.
- Die Veränderungen der Energiemenge kann man durch einen Energiestrom beschreiben, bei dem gleichzeitig auch der Energieträger strömt.
- Es ist (leider!?) auch üblich der gespeicherten Energie einen anderen Namen zu geben als der Energie, welche strömt. Man nennt die gespeicherte Energie eine Zustandsgröße, die strömende eine Prozessgröße.
Zustandsgröße Prozessgröße Energie mechanische Arbeit thermische Energie Wärme
Energiemenge eines Wassergefüllten Glases
- Es gibt verschiedene Energieformen / Energieträger:
- thermische Energie/ Entropie
- Druckenergie / Wasser
- Lageenergie / Schwerefeld
- Bewegungsenergie / Impuls
- Einige Energien sind vom Bezugssystem abhängig:
- Lageenergie / Schwerefeld
- Bewegungsenergie / Impuls
Das Wasserbehältermodell
- Wassermenge und Stromstärke (Durchsatz)
- Wasserhöhe und Druck
- Widerstandskonzept:
- Druckunterschied als Antrieb
- Stömungswiderstand
- Energietransportkonzept:
- Druck als Energiebeladungsmaß
- Druckunterschied als Potentialdifferenz
- Energiestromgleichung (Leistung) [math]P=\triangle p I_W \qquad \qquad \dot E = \triangle p \dot W [/math]
Es gibt zwei Konzepte:
- Antrieb-Widerstand
- Energieträger & Potenzial
Das Wasserbehältermodell besteht aus zwei, mit unterschiedlich viel Wasser gefüllten, Zylindern. Sobald man die Drehverschlüsse an beiden Seiten aufgedreht, strömt das Wasser aus dem höher mit Wasser gefüllten Bottich in den Zweiten. Dieser Vorgang lässt sich mit Hilfe des Wasserrädchens beobachten und stoppt erst, nachdem die Wasserpegel beider Seiten sich auf ein gleiches Niveau begeben haben.
- a) Die Strömung entsteht durch den vonstatten gehenden Druckausgleich, der durch die unterschiedlichen Druckverhältnisse in den Gefäßen verursacht wird. Die Druckdifferenz zwischen dem Zylinder mit dem höheren und dem niedrigeren Wasserpegel, ist der Antrieb. Ein Widerstand besteht durch die Reibung in der Wasserleitung und dem Wasserrädchen, dadurch fließt das Wasser nur langsam in den anderen Behälter.
- b) Das Wasser ist der sogenannte Energieträger, der auf der Seite mit dem höheren Wasserpegel, auf Grund des höheren Drucks mit mehr Energie beladen ist. Sobald eine Verbindung zwischen den beiden Behältern gegeben ist, versuchen die unterschiedlichen Energiepegel (Potenziale) sich auf beiden Seiten auszugleichen. Ein Teil der Druckenergie wird „auf dem Weg“ zur anderen Seite zu Wärme umgewandelt, da die Reibung die sogenannte Reibungsenergie freisetzt.
Anwendungen des Wasserbehältermodells
- zusammengedrückte Körper: Stoffvolumen und Druck
- erwärmte Körper: Entropie und Temperatur
- Körper im Schwerefeld: Masse und „Höhe“ (Schwerepotential)
- Stromkreis: Ladungsmenge und el. Potential
- bewegte Körper: Impuls und Geschwindigkeit
- chemische Reaktion: Stoffmenge und „freie molare Standardenthalpie“
Energieträger und Energieträgerströme
Systematisches Denken
E: Energiemenge
S: Entropiemenge
V: Volumen
m: Masse
p: Impuls
Q: el. Ladung
n: Stoffmenge
Mengenartige (extensive) Größen
Hat Eigenschaften
ν: Temperatur
p: Druck
gh: Schwerepotential
φel: el. Potential
μ: chem. Potential
Systemveränderungen:
Verändert sich die Energiemenge, so verändert sich auch immer noch eine andere mengenartige Größe!
Der Energiestrom ist proportional zum Trägerstrom. Das Potential ist gerade die Proportionalitätskonstante.
In der Regel strömt aber Stoff von einem Gebiet in ein Anderes. Sind die Potenriale unterschiedlich, gibt es einen Netto-Energiestrom von den beiden Systemen weg.
Bsp.:
Von dem warmen Wasser über das Thermoelement in die Lampe.
P = Energetische Stromstärke/Energiestrom
Eine mathematische Schreibweise
Durch den Entropiestrom ändert sich die Entropiemenge. Die Stromstärke ist gerade die momentane zeitliche Änderungsrate der Entropie. Ableitung nach der Zeit.
Beispiele:
1. Luftballon
.- Trägergröße: Volumen
- Potenzial: Druck
[math]I_E=I_v*p[/math]
[math]\dot E= \dot V*p[/math]
Wenn beim Druck [math]p[/math] der Luftballon um das Volumen [math]V[/math] kleiner wird, so verringert sich die enthaltene Energie um [math]\dot E= \dot V*p[/math]
2. Schokolade
- T: Stoffmenge
- φ: chem. Potenzial μ
[math]I_E=I_n*μ[/math]
[math]\dot E=\dot n*μ[/math]
2 be continued...