Aufgaben zum Elektro-Magnetismus: Unterschied zwischen den Versionen

Aus Schulphysikwiki
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: „Induktion und Selbstinduktion Damit die in der letzten Woche und evt. in dieser Woche ausgefallenen Stunden etwas kompensiert werden können hier nun ihre Hausaf…“)
(kein Unterschied)

Version vom 2. März 2011, 12:03 Uhr

Induktion und Selbstinduktion

Damit die in der letzten Woche und evt. in dieser Woche ausgefallenen Stunden etwas kompensiert werden können hier nun ihre Hausafgaben bis Do, bzw. Fr.: [bearbeiten] Aus Dorn Bader, Seite 59 (Kopie mit dem Bändchenmikrophon)

   * Aufgabe 2
   * Aufgabe 3
   * Aufgabe 4 


[bearbeiten] Lösungshinweise

   * Lesen Sie sich nochmal die Seite über das Induktionsgesetz durch. 
   * DB, A1: Dieser Typ von Induktion ist ja auch auf dieser Seite beschrieben. Man interpretiert das Eintauchen als Änderung der effektiven Fläche. 
   LaTex: \dot A = \mathrm{1 \frac{mm}{s} \cdot 60mm = 60 \frac{mm^2}{s} \, (=\frac{\Delta A}{\Delta t}=\frac{\Delta s \cdot 6cm}{\Delta t})} 
   Zur Ermittlung der Polung dient die UVW-Regel. 
   * DB,A2: 
   Zu a) und b): Es ist wichtig, dass kein Strom fliesst. Die Schleife befindet sich im freien Fall. (LaTex: s=1/2\,g\,t^2 und LaTex: v=g\,t) 
   Zu c): Entscheident ist wieder die Flächenänderung. 
   Eintauchen: LaTex: A(t)=v(t)\cdot 6cm 
   Mittendrin: LaTex: U=0 (Wieso?) 
   Austritt: LaTex: A(t)=-v(t)\cdot 6cm (Wieso anderes Vorzeichen?) 
   * DB, A4: 
   Zu a): Offensichtlich führt eine Flächenänderung zur Induktionsspannung. LaTex: U \approx \frac{\Delta A}{\Delta t}\,B 
   Zu b): Lesen Sie noch einmal die drehende Fläche. LaTex: \Delta A = A_0-A_0\,\cos(\alpha)