Die Bewegungsgesetze einer harmonischen Schwingung: Unterschied zwischen den Versionen

Aus Schulphysikwiki
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: „ ==Herleitung der Bewegungsgesetze== ===Zusammenhang zwischen Winkelgeschwindigkeit, Frequenz und Periodendauer=== Wie bei allen Kreisbewegungen und Schwingungen…“)
(kein Unterschied)

Version vom 14. November 2011, 13:41 Uhr

Herleitung der Bewegungsgesetze

Zusammenhang zwischen Winkelgeschwindigkeit, Frequenz und Periodendauer

Wie bei allen Kreisbewegungen und Schwingungen gilt:

[math]\omega = 2\pi f[/math] und  [math]T=\frac{1}{f}[/math]

Das Orts-Gesetz

Der Ort des Körpers ist gerade die y-Koordinate der Zeigerspitze. Hat sich der Zeiger um den Winkel [math]\alpha[/math] gedreht, so gilt:

[math]\sin \alpha = \frac{y}{\hat y} \qquad \Leftrightarrow \qquad y = \hat y \sin \alpha [/math] Der Zeiger bewegt sich mit der Winkelgeschwindigkeit [math]\omega[/math], es gilt also [math]\alpha = \omega t[/math] und damit erhält man:

[math]y = \hat y \sin (\omega t)[/math]

Berechnung des Geschwindigkeitsgesetzes

Die Geschwindigkeit ist die zeitliche Änderungsrate des Ortes, also muss man nach der Zeit ableiten. Dabei muss man die Kettenregel beachten.

[math]v(t)=\dot s (t) = (\hat y sin(\omega t)\dot) = \hat y cos(\omega t) \omega[/math] (Wiederholung: [f(g(t))]'= f'(g(t)) g'(t) )

[math] v(t) = \hat y \omega cos(\omega t) = \hat v cos(\omega t)\qquad \qquad \hat v = \hat y \omega [/math] ist die maximale Geschwindigkeit.

Berechnung des Beschleunigungsgesetzes

Um die Beschleunigung zu erhalten, muss man die Geschwindigkeit erneut ableiten.

[math]a=\dot v = \dot{\hat y \omega cos(\omega t)} = \hat y \omega (-sin(\omega t)) \omega[/math]

[math]a(t)=-\hat y \omega^2 sin(\omega t) = \hat a sin(\omega*t)\qquad \qquad \hat a = -\hat y \omega ^2 [/math] ist die maximale Beschleunigung.

Folgerungen aus den Bewegungsgesetzen

Impuls

Der Impuls hängt direkt mit der Geschwindigkeit über [math]p=m \, v[/math] zusammen:

[math]p(t)=m \, \hat y\, \omega \ cos(\omega\, t) \qquad \qquad \hat p = m\, \hat y \,\omega[/math] ist der maximale Impuls.

Kraft

Die Beschleunigung hängt direkt mit der wirkenden Kraft über [math]F=m\ a[/math] zusammen, daher folgt:

[math]F(t)=-m\, \hat y\, \omega^2 \ sin(\omega\, t) = \hat F \sin(\omega\, t)\qquad \qquad \hat F = -m\, \hat y \,\omega ^2[/math] ist die maximale Kraft.

Ausserdem folgt aus der sinusförmigen Bewegung auch der lineare Zusammenhang [math]F=-D\,y[/math] von Kraft und Auslenkung, wie bei einer Feder. (Siehe hier.)

Frequenz

Die maximal wirkende Rückstellkraft läßt sich auf zwei Arten berechnen. Einmal über die maximale Beschleunigung [math]-\hat y \,\omega^2 [/math] und einmal über die maximale Auslenkung [math]\hat y[/math]:

[math]\hat F = m \,\hat a = -D\,\hat y[/math]

[math]\Rightarrow -m\, \hat y \,\omega^2 = -D \,\hat y [/math]. Teilt man nun noch durch die Amplitude [math]\hat y[/math] und die Masse [math]m[/math], so folgt:

[math]\omega^2= \frac{D}{m}[/math]  oder  [math]\omega= \sqrt{\frac{D}{m}}[/math]  ;  [math] f = \frac{1}{2\pi}\sqrt{\frac{D}{m}}[/math]  ;  [math] T =  2\pi \sqrt{\frac{m}{D}}[/math]   Frequenz einer harmonischen Schwingung, sie hängt nicht von der Amplitude ab.

Die Schwingungsdauer, bzw Frequenz folgt aus der Kreisfrequenz mit: [math] \omega=2\,\pi\, f [/math] und [math] T = \frac{1}{f}[/math]

Beispiel: Federpendel

Das Federpendel benöigt für 10 Schwingungen 12s bei einer Amplitude von 9cm.


[math]T=1{,}2[/math] [math]\omega=\left( \frac {2*\pi}{1{,}2} \right)[/math]


[math]s(t)=9cm*sin(\left( \frac {2*\pi}{1{,}2s} \right)*t[/math]

[math]v(t)=9cm*\left( \frac {2*\pi}{1{,}2s} \right)*cos(\left( \frac {2*\pi}{1{,}2s} \right)*t)[/math]

[math]\hat v = 9cm*\left( \frac {2*\pi}{1{,}2s} \right)= 47\frac{cm}{s}[/math]

Aufgaben

Zu 108.2

[math]\omega[/math]: Winkelgeschwindigkeit [math]f[/math]: Umläufe pro Zeit

z.B.: [math]f = 2Hz[/math]

[math]w = 2*\pi*\left( \frac{1}{s} \right)= 4*\pi*\left( \frac{1}{s} \right)[/math]

[math]\Rightarrow \omega=2*\pi*f[/math] und weil [math] f=\left( \frac{1}{T} \right)[/math]


[math] \omega=\left( \frac{2*\pi}{T} \right)[/math]

Zu 108.3

[math] \phi_0 [/math]: Phasenverschiebung

[math] \phi_0 = 0^\circ [/math]: Schwingung in Phase

[math] \phi_0 = \pi \, (180^\circ\!) [/math]: gegenphasig

Links