Simulation: Wasserbehälter mit Zu- und Abfluss (Fließgleichgewicht / beschränktes Wachstum): Unterschied zwischen den Versionen
Aus Schulphysikwiki
(Die Seite wurde neu angelegt: „ <ggb_applet width="1200" height="750" version="4.2" ggbBase64="UEsDBBQACAAIAMWUhkMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNH…“) |
|||
Zeile 2: | Zeile 2: | ||
− | <ggb_applet width="1200" height="750" version="4.2" ggbBase64=" | + | |
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <ggb_applet width="1200" height="750" version="4.2" ggbBase64="UEsDBBQACAAIADiVhkMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACAA4lYZDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1d63LbRpb+nXmKHk5VSk5ECn3BLZEzJV+jKiVxWZ4ou+sdF0iCJCIQYABQopz4bfIA+2sfYPNie7obAHHjBRRIkbZTsUAAjUb3+c75+vTt4PSfs7GLbuwgdHzvcQt3lBayvZ7fd7zh49Y0GrSN1j+/+9vp0PaHdjew0MAPxlb0uMU6pDV/Ds46msIfdvqPW4PBQLEHSrdtD/pmm3UHWtsiBmnrao8OjIHFFAop0Sx0vvH8H62xHU6snn3ZG9lj68LvWZHIcxRFk29OTm5vbzvJ2zt+MDwZDrudWdhvISi5Fz5uxT++gexyD91SkZwoCj755YcLmX3b8cLI8np2C/FaTZ3v/vbF6a3j9f1bdOv0oxHIgBGthUa2MxxBPbHCWAud8GQTqO3E7kXOjR3Cw5lTUetoPGmJZJbH738hfyE3rVAL9Z0bp28Hj1tKh2BqGMw0iWnoVNdpC/mBY3tRnBbH7zxJcju9cexbmS3/Jd4IBYt83+1aPEf0xx+IKERBx/yA5YHAQdPkLUVeU6g8EHlg8qDKNEw+zmRSJtMwmYZBGW+c0Om6NkBsuSHI0PEGAeCXnofRnWuL8sQX5rXHx1Cn0HkPiakC8EuhcwErx/yfBv8Yv3GSryTOvDUKpktfKu9n3pm8ETPFWP+V5F4VpfNqquV3ErX6nUYGS8yx+gNhDpI4UMThwQImfmDxqSZPdXHAijzg+KbB/5j8RLsfcKkQ1QxsUA3xv/hXBm3ZKyVKDb+RLgOt+MbFepJ9ISHqMWbGMYarx6ZKSu/U2K5ryRRTb7yelJJjQsixSdVjQ2Gll+pKJc/II46PzYu/QhKnJwkLnsYFQuGIp42JIbLHIS8iNZEqNB8jFUxJ04HAVIRNOOjcpAjCKmIqnGIDafyoI8qtiCGKDMTTYYoE76kG/GG6yExDKmTGr+rS1hBlSKUIC7pkCOSABOWCVAiFFKqKVHiIvx4TngXVENPgjBqIQRk52+rc1Ck8COfweoIoRpQ/jHVENKTx/DDjLK4ZvOiQJUGagjQheSBsIGtJ1JDeQJTXBqxv4odOKt2R7U4SIQk5Ot5kGuVk1xv3k5+RP0kxFKn7fu/6SSrr+I5thVE2GTRV8wZRNl259vKLU9fq2i74FZdcERC6sVxOluINA9+LUKIERF4bBtZk5PTCSzuK4KkQ/WrdWBdWZM9eQOowebdI2/O98FXgR099dzr2QoR6vqukVfNdnPlN0lLDCc3cYNkbauaGlvmtV77XhztoGtrwfj8Ik+RWv3/OU8xZFgT4k+fePQls63riO/lqnJ4If+TUnvZcp+9Y3s+g7PwtXC5o7p7wpixxTwxNT0riB/3LuxBMAM3+0w58uKeAO8cY0JgOvgbFYNl38o5GlY6haBrRVabpOmfrsGdx0zU7VGNghiZWwSsA3wSeqbqFFT2Gzr5JAbJm9ryuw8BJNYr/Pg+f+G4/vS1q/9SaRNNAuJrQaga8Smfe0LWFhoh2GJy23nXXn11K1aAyrzd3EzhTZAG6QyF1BMRCVGhxh/GxK48iDS9ZmkoRaRSRQkl0zemn9zExRApx7MqjSAXKK4sW1xQntcRK8honFJSptPLGIlSfe4BTz4kukpPI6V3HVcXygR+n466dKlA+T9xcnrzU4IyG0S+87Nxt5yf/kT15M7IjizuqKqEq6IGuwl9wVg2pqQUdPb22A892Y5MAbZj601BaeMZawEBeWdHozOu/tofATa8s3j5EUDiZdF7Avt1zxvCgvB4TgsVV419QWXm1bw8DOxGSK/oHEhxxV8maRemyyOpF4I/PvZs3oHelokInIQBdhEJwEs0X7/Qkqe1p2AucCVd+1IXm7Nqe6zfI0ILGsJ+1b84FkElPZBk5EQfpmRWiKysM7aBrj/760wVpjP2+7brfoOeOh54kF4FNptHIB/UEEQYAMvoRaja2PA8dhb3R1J2M7kLn+ta5djp9+xEUAJgSADXRpT0BUgAVgOYJDIgTjGuPoauBImFG3nRsQ4apQkFHybWm8OevP72hLbo0UP1pLECsdmIZct1CfvdXYPiiTs6BhPsL7A5ZUGShYTi2LusOypgFXOT2A0gjfnWCXYIKkN1EqvnEtqWFRDEzoAlkJ4glQ69xvVdK4NV0PLG96vrr+1Z9nkHTArgqoa5orKMB/evEVA3dpNrHL4R+UQhMqcQ+9mblQxkKKVcbK3Ur/tNgENoRmkH7CC3a3eNWW10mltDlwwto7HiiTUJja8aLDa/rhuAZRfZlDyjTm4+xyLInnoXBbVu8jIqBIHifQUSLMHBmdtqaAws574Hl85Q9bxwj8NquPTsMRQueYsF/fO/0+7bXrCnPJgG8i2cSY/ASnNPZhAMo/NLlKL9cjPLaeru8OKO4OFfoBL1cp0ijYpGI1tGwpimMEmpqpsHuU76lrxbPFV/fJqRjmLrCdMUgRAd3Uv34rV+U7aIsCsqw2cGaKf7TMWFbFwV92MawX9IHfE8aLFdaqYd/luYSlqO1SU7D5EFIbkNtLfHK65hXVPQVgjyBXfrWv4/Yo3Uo5nURU/Dzt0YqvfUU6D5Ws1yB5q0oODACcTXh0IKCKfezKuhvQI827TD8bAfgSQ+Q5b2H7rrt1RPb+ZVTdsM2d0GSvvG92bfK+ohS38lQlQP2Mc6v/Nj82j2wvxFY3+t1DI8/V2xTVNohlBLF0Bh41qZmNOp+XL3DqQPyNQKlgqJiBbVRWm5xYZ3C86zKHQOzQ5liqESBskOT2KzvNC/8O7y2/1QuJnhQOqUqwVSBFhyKSZot5jgu5dEIZAzvfwRlJWuVdVzl7OmqohEDU6zer6Q9fzy2vD7yxDD8Kz7k1poP/1rK49bsbOaE8RumUXL1TGYUP16qhBi7S6tw1lpB5QsICRM1HmabD9YtY3RayehEdou0e9I5rqbzECouhmvOXNe/tfulcSIxvhTygrS1hM/E8X2mmRPy4iOYuYrIq4WhqRWsE6vZGWjZURt3CJhwfrjmGLXxo1Yep7IW5gE8XwXg6rZ4FXbVDYpSX8i6EQu5jbcm5auzhHSOZkdnj47RHfzldl1XsDyjjUTLJxaH8tCVhyWyVZqSbarA5f7mdgR9RrJyBgn3pazryhny2a2Y5/TTxpKA6FICqoMC2T6NPE3kfkY4keQZBCiFQOtFj5FSF4enm+Ig51s0Od3CD7VxULV4eExvCge8fRxSnhF8rhwjo7bID5RhjC0KleaUG6Tat2pLlR6SVFPG2F6TeMaKQt1AVdlBCnWLqvqEZto/yhvAojN3x6/XFfSTXWvvnIbj1rBdPWa5AQxqw6qd7xFd2kN+vdAn4spuYcECxY5R9x1e3jUK4xwTSXffVRB0s0OlTam8bhYbPNWYv69q5IUtH3mxf/PkI6Fcj+CMJ67Tc6JUqi7vb517fAGALGR5ycC1bU/4ao+fvDeB5YV89XFxMr4muFSC+6QM7qAetINDATZtHtQY2PZ8Ev8gcK1gzmzPgSxgTlKfOR+uI2HInldj7ZfasPe6lm2R2LZIybaG9WxreLC2dViMWdE3LBoWH3alFeNMfYuPcdbuIm5/rKkxE8JzG1K35AE+m0v7qRhoevoItRHpqHXl+uwQ5domW3Otn1cI9utNBPv8EAVLd0j6zyTnPy9R/q/1KP/XDacRiCIbXxXvkPZLzWtbX+5S8ZXLe878z6yszUgakpZTm4ysQ+rpY72jbpnmn+dF+/Xmon2+a9FmhroJjWdeqtcgbiJ60rDo1yIsK2Ysq0RZbj3Kcg+JshJPNe0EkmTJz6ES1tVZvhfILerqDNe2qaudzx81MzK5nWm64poB927oe8WOXjxAxvt7JAbConLCs2hTPzu8btdYPmLxBR38GSt+5Fb8YPzHiqG1SVyUBJM044U6vGJl0L26l3mnTlcbxXvxIrEiBVlV44trkdBDeKiJ5jJlrd7yCvx2T0HLoVjJInuERLuCPLLurEpJp2JN2kcA0+1B4ZRYTDs1mUVbcT4KaA6JzJZbEFZNrWOaGlFNRg1sKsucrb2DqbzYPB2pIt9K4fJuzFNS09V63cA41fKlywv6LppcH8Ka67pgvmjXVHXG+KZorNN4nlLV4aoJBqrpqqGoBacssx81BhPcGivYvsc2H5oX7hefeubuV8UcZ+xXxfNkFkk8ti55F/tsXSpdNotu5LHRxR6b0rDHVrWVO9Ee3DA31PEUNp0VXlafPZrmWAHjzhsWoboHJfA2Lg4wLh9f3DuJV6xB2Wd5p35WquEr5sj3TeDWgQm8qN9k3xgl36o+dYKeaxca1adxo6p0yhPevy1vGnu+l9kF8ttm2CXjiNIvwgrJIMcaRq4SFXWF38o3vd1Avn4QIjRTEtSVBPbkygyE2JYmiJO1XjjTQo95yIsZOkvSnyWpzsAvMc2OCd7dGY1zPWNJHJMzNc620ovmsYmcAaCwFPjXfmRFReBfx5NepvLV//2P9I6ellXg9TOyyj/K+8YPt3zajMlv6a7Imu5xwRFOdm3kvWbONrv1j5cCio0ViK70ePOIbroS8/6Itomyxs6oOpAaHZ33dqF7rRrMNIieIFoAWtsrRIm+AlFWD9FNFzE3gWi8x6ExIzU6jACiCqUqJQybLO7CFkx054DKxvZSNBwLmlwBL0k5NodpsEbTO7GCOarBgTa/q4aNdtP8auJX3dZ3x4uB11IpmugUK+lUWFenws869VmnBD3FOlUeaOut2kxQ1qrepgNHi/Wq6WGwz3q1E71iiV6V1KpfX636n9Xq41erBWv206UcRT3ylmtRcQDKO7Ql+2suQlixZH/rA33daRRl5lAueyPLjQbuX3/2RvYqq91OECXDlLv8dMNcBomI55Ov5Ren1nTmuI4V3BVvDIddGUw1Dgx99Vj58h9Y+XYUH2Upky5INspSGiIVubYdlKMsrTOQF/cVSzYwqTOKN7nncsB1EMH3MoKN9qTshEIJgW6nWiRRNUOiar1RvKqQTY6Si59CFB4tpfY+ZpHPRoMAdVYpNBYxxZhPbWwxMM2Vk8Qy4OLh4k0iTW0QR0LkdjgS1puXcJ6zfq5yBaU6c9oS4ioy13Q5c0mDTqU53dD9WxhTbnviLsXlWN58r5iiKA9m9cAxtkPH8uKS8UDgInLWXL3XsQc/xzVsU6rxD4lqyG6oxp9Tjc8D2QHV+JtTjX9IVINZR9M1TTcxVYmiKRQ/BPH4KfH4ZeK5qUU8N80Pk21P/GqH5gI1mg/KQ/4axvLGnkVJkJEvf5v60bdvoechvzfQnwa9UWhF79FbFNiOJ++3yhYTQSatfI573lo44YX1xv6l2McQX5mBmjuD9JtEYCA/xG6o/PqM0koASOKHVkY1RSKCsNy0r5lsPSRwHolBYPV+fwtOsfgaBbr6kDmJPqDHCMmEvAER9fkvaHz+m6+7jK+/PUYcTpnR2P3we/ghBrGC90oobjrkc5AoVn9QZDG0hlzOqdM1oSV1oa3A1m8O2w1Xu+2SVreH7hqGy+IRDLl4fjW8bB0Otabh+hxaMY/8MSO0DAxixjRK1wNDLYHxMph6/XhMDIyraFovC4bVG/+b1DAm9T4jm1Xf/NhnoOoSJdWSwcA1TUkroff9X/9bCduoBFsN0LT7gUakfan0QGBbZl/J1oc1mzJ9AdfBQ8MqmK4KMI3dGjDp95812G7na0cgUcpiElTXQ8nIo9S1h473uxUE1t2H390PYshcOBBn3YE7DcPAHwVv/w6d5bdv5/ee8dZrbHNwK3DtWyX7Q+LZt7bXj19VA2lj2/ND+4NzXQ7VaMyh+hpdujN6UYgaWzsIE89iozGPWqvYGhv0mMel3tqg0pNUqCIU5wUPf4I7akXYqztxu35Izl1LfD5dlwzJNRaT00iidmwRD5LBA4T3aLPA4DybhxJ7Ww4O0MZ2BBnzYCnbGOur3jcogBALBOR6E8E+fA8g1+ji0F+8vy9eo9IlbhzqIdk3aFFXbhzs0hWRVhbsHCSf+s5BLtPGq7NN8k6pm8QRfvZtm8+q8Bo72jfY3BxMYXasjfduZ9WqjWwHquLtVMfZYW0d7B6axIs6jrV9E/g6K++EzynjjJeb0u7y9rEE4aEtvkttpb3CWFYs8Hwo7OZuURE5ux5y9sEid6/YTQ+12hUvNjmrHnAVgRj3E7j0k1kJXTLtwOL6V/QP573Dc+gb0todwwNa85Hi11RU37I4X8TifMJHlF5NxxPbS8Y7aq+oeXFIosVbF+33yVqlBkT7/SGKtrEP9a01XCHp/YUcePheDjucLxqoiL/z0n0Xb9IaiFBHlH9BNA5K6Ww0TMF2F5JSzFBVhZKtGqO4z+LxGt2JjfvMi+qyi96bnvSXCd4zv2a5tAcbh5J6CGmzgitCDHZQ0h4dpG63U+XWD0razgHJul1U7TbFZN+kXfEl0NxkYrv0KVC88adAdzHz0tiUltb055KqImheFENoXsgYmhe1g2gemmwppaqGVdXkUUYSr9DUsWkYigK3iEn3JGjMRUVgp/JQwetn8mKN0E67hiz7iWK5tERfuluzFqLQXSKGgrFpaozqShwJSMnjrChM3S9U89GdqmClNWHdybT+Iljj8bjmDJXHlQZADcYUXTVwHA1on+00H92pClFWE1F2WNyqleARjVjBEPWdw7Y0hsVFGsTiIoliUYau/w6vgK4yjkUFfPfZ1VDVjb4fepW+4KqPrexkDzYjRP7O7sHWsnuw41z2OT5KqlupalXQQlBbs4KG9aoqmtNnvToEvSKpYlXMIfU2IK3eZ9L6rFxJBLpUuVhZucLaqhV+Zq2PXrGWhnWq+iDXaEUsw9KY54ahDOW0kxiM68Yb13bhEq/4sFGt77Lg/Vw5tDhm18vLethC+vtgu9betqaQrRm3a9UHDLeO3YupJzJtwQMgslk5fosIWhGHkJe8zyVaxPT83e9XzofluA7Sd8W4xQ+tDS60HX1HbEjhyX+KU1/XaRoe3ufYGIujHkDxGn2FZo/Wx8TfBBO/ApOFQcLWB6XWruCHhKUqnssrJxkYHx0jKaSjUe29HiKfQ9b3VV8Wq4g+sqUAO6/8AiDOhoD42wBkh7q+CpJdht05isMbcWY60uRJkZZmyVqNNaPv8PTNI7T+Esem0El3CK7nGqyYea0TiyfrmBSUYfUeXjO3hxcr60ePMA8YtiZ32haQAHsEguQzUowxTVMZS2emcpcVwuohxV2CDFSkBlS4IoLbZ6zEB5/yoFRCRU2jJlL5IEu0DlI1VlJ9SkjRNa2qJlD5kEmsDlA1FmF9SkCx7QCVDyCn1gGqRqS4TwkodTtA5aNUjdBbEeXjqDd+VAOyGoGpPinIaIfxqXbMmEEMQ6EpYgz6IFihmg6dM9XQa2KmFnzAOtZVIzDVpwRVm3awgjWmgB1hylSmyQVKGHeg32youqpgrCq6TmpipRWcwDpY1YhH9UlhRToGWJNqqrpuEKriGCtCOmBrOsGUMMVQFJXWxCofxer83VXMhm9dexAd5eIqwnVnOIrqkGSNsFWfFJp6R1GJoZtEVQFWVZehx4jRIbqhQ4OmGSZjlKiLwKw7DgK/acU4yF3NcZC7j2QcJBmJoHs7DpL/tInvu7Y1HyC/FiBA9aZ2qZLb+8hJ9fJKIw3uu3TXVG9k9667/gyJr51kC5P7RskLZzaZetdR+5ljDQNrPF4uGG86BkOcf1kkKgrGSOpxr82AWbngklyq9x8nhu86fUg4djyRzdiaydnS6ihnCWK3Tj8aiRkVMT3PI0Yk2yZ0TXxEKRZjXJORHzjvgZfyTLXJnmXLc8Yy4FoY2RN+GYUTm79qPscL1yZQf8cbZt+W+TCN7/1r0rciSHr1DqPH6Ap9jc6vnBPMo9D30FdoJKaR4PzLf2D6rfx+jUz5jm+keJm5PIarRyPIABI8OiHzO1eVGY8rchYJc7kKNOGyPH6NkIyMzz2VfJqLJNEFvEDOROYSFdUTiNQLQSaCh/j50PaHdjewvvt/UEsHCHJ4/LZRFwAAQcoAAFBLAQIUABQACAAIADiVhkNFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgAOJWGQ3J4/LZRFwAAQcoAAAwAAAAAAAAAAAAAAAAAXgAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAADpFwAAAAA=" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" /> |
Version vom 6. Dezember 2013, 18:43 Uhr