Simulation: Wasserbehälter mit Zu- und Abfluss (Fließgleichgewicht / beschränktes Wachstum): Unterschied zwischen den Versionen
Aus Schulphysikwiki
Zeile 1: | Zeile 1: | ||
− | <ggb_applet width="1000" height=" | + | <ggb_applet width="1000" height="800" version="4.2" ggbBase64="UEsDBBQACAAIACGuhkMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACAAhroZDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1d65LbxpX+7TxFh6lKjewh1Tfc7FFSo6tVNUlUkuPJ7mozBZIgCYsEaALUcOzobfIA+2sfYP1ie7obAIkLL02CHFKaOBqQINDoPt85X58+3X1w8efZaIg+epPID4MnDdLCDeQFnbDrB/0njWnca9qNP//pdxd9L+x77YmLeuFk5MZPGrxFG/P74FvLxOJmv/uk0ev1sNfD7abX6zpN3u6ZTZfatGkZHdazey7HDK5Es8j/Ngj/6o68aOx2vHedgTdyr8KOG8syB3E8/vbx49vb21b69FY46T/u99utWdRtIKh5ED1pJB++heJyN90yeTnFmDz+x1+uVPFNP4hiN+h4DSRaNfX/9LuvLm79oBveolu/Gw9ABphD7Qae3x9AOx3TbKDH4qoxNHbsdWL/oxfBvQtfZaPj0bghL3MD8ftX6hMaZu1poK7/0e96kycN3KIOo6ZDGbbkX7uBwonvBXFyLUme+Tgt7eKj792qYsUn+UTeQHEYDtuuKBH961+IYorRuTgQdaBwME31E1bnMFMHqg5cHQx1DVe3c3UpV9dwdQ1ngLcf+e2hBwi7wwhE6Ae9CcCXfY/iu6En65OcmLeenEObIv8XuJhhkK+SuZA2Phf/TPjHxQ+P840kC0+NJ9OVD1W/LzwzfSIBUWz+SLpTQ9m8mUb5mdSofqa9gCURWP0LEQGSPDAk4CESJnHgyVdTfbXkgWB1IMmPtvjjiC/mbsBlQjQWYINmyP/Lf2XQVj1SoVTzE9kq0IpPXK4niw+k1Dgn3D4ncPbcMWjpmSY/dCs5dqz628n4OWHGuUGccwuXm2nhSp5RR5Ic6xd/hSQuHqcseJFUCEUDcW1CDLE3ikQVmYMMqfkEGWBKpgUEZiDiwMESJkURMRA34CuxkSmOFmLCijhiyEbiOsKQ5D3Dhj/ckoWZyIDCxFlL2RpiHBkMEUmXHIEckKRckAplcIVhIANuEo8nVBTBTMRN+MZsxKGOgm0tYeoMboTv8HiKGEFM3EwsRE1kivIIFyxu2qLqUCRFJkamlDwQNpC1Imq43kZMtAasbxxGfibdgTccp0KScvSD8TTOya4z6qYf43CcYSiv7oadD08zWSe/eG4UL14GXdW8Q1RdV66//Opi6La9IbgV74QiIPTRHQqylE/ohUGMUiWg6lx/4o4Hfid658Ux3BWhn9yP7pUbe7OXcHWUPls+WvbjF960M/S7vhv8CFoiihAFonm3LpQ07dYt21GP6YThpPvuLgLdQbP/9CYhaB4lLYcDoTLLJIQzkOBd8ouNW4SZluNYto1tGwQddVyh80bLpoZjMgMzuIEwC7jhrvo3J3my9zFrmjvzsgah/sTPsBCfX0dPw2E3+3kc+kH8zB3H04n00aB2E9Gmy6A/9KRsZQ8G3k7nQzucvVNCZaqsH+7G8A2rCrT7z8JhOEFgktSAvqqfHNvqKK8RNcuuwvIaLK/AKUp+N/udOFReIY9tdZRXAeyqaklLSdpKnD7Fj5D6ntcyqTPCdZoGfnyVfon9zoekpUTd8NfpqA3qlogtXyapr0xRafDiovgfQp+Euyu+/Mfilx8GXuwKD8+gzHBsyzLgL3VsW2lqQUcvPniTwBsqRQxAGabhNFKmkan3VxfTyHvjxoPLoPvW64NRv3EFscZQOXXpvIJdr+OP4EZ1PpG+KzTj79BYdbbr9SdeKqSh9KsVNvJXvGgWpdOyqJeTcPQ6+PgDqF2pquBcT0AVoRKCffLVu3ictvYi6kz8sdB91IZ+4IM3V2+QoQu9SHfRvkE0ERTSkUXGfixAeu5G6NqNIm/S9ga//XsI0hiFXW84/Ba98AP0ND3ZQO40HoSgnSDCCYCM/gotG7lBgM6izmA6HA/uIv/Drf/Bb3W9R1ABoBihuuidNwZSABUAXgf7EQQz9Ebgo6NYWlEwHXlQYKZQMMAYulP489u/g74nxwLQ/GkiQGK0EhkK3UJh+yegxqJOzoGE35eYHXKhylLDSGJc7h3UcRFwWdpfQBrJo1PsUlSA7MZKzceepywkTogBjaE4ySsL9Jq0e60E3kxHYy+obr91bM0XBdQtgOtiqw2OW5xiRm3DNA3oNT5/GXSLMuC4EvrEC1Q3LTBIudkE6zb8b71e5MVoBg4G9Gd3TxpNY5VYoqEYlqORL9wleMrInYlqNzLXQdiuKK3J4ZNtmdw2bG5zMy2dSvrv+TMv67mBcvxfgNLz/DzvCGPwbT7A2D6SvXUmefHhe7/b9YJ67XY2nsCzRCGJxF+BCzcbC7ik97Ya01fLMd1YS1dXZ5BU5xo9Rq82qdKgRLCsZRBsYJsSTkzucGuXCq58tryv+Pwmbxmc2RYM+21CTSv1Yz9nW5d1uypLglGHthzTkf+zrf1Lgt1vx9ctaQPZkfPKjcZ68C9yWkppLGM0RVizjLoOTmJbamOJN94mvGGgrxGUCezRdf95xh9tQiFvi6CB0743zuhspiG7mMVqDZn3iZxYEnHowyo1CO9mNjB4gNFp5v3/6E3ALe4hN/gFxt5eoCe219d+SXB4e4ciHefuzK5V5kUxrjAw+34MrB7zen0dJgbW7ICFDcC+3m5iWuK+Yq9AYQhACYa+mdrQQdgOr9WDuL4hmQ/xDQK9gboSjJooq7g8sUntRVElR95qWcSmctIGHECnXu9nXvcbsrEHVK4l+EBQP8cwTHBDHE4orbeao6SWZwMQMTz/EdSVblTXUVVVMbEYcTgzocpsF+rthCMY0XdRIOPNb0SErDGPc7r4SWN2OfOj5AnTOD17qQpKbi+1QobasjZcNtaw9RLOIVRxjjwmsbVVpM0qSZsqDjF3ZGxSzdgRNFyGVy6Hw/DW65biOjIeFElCM1NCk8dfFnoyKS8RcMw1RJ0thJLW0E6iZ5egZmdN0qJgwvnwyjlqkkeNPE5lNcwD+HodgOu723XYVfcZWF/Ilp32GmRvUr6+TFnnbHZ2+egc3cFfYdi6ghUFbSVaMYPWV4e2OqyQLa5LtpkCVwwZ9yPpS7ooaBBxVwlbV9BQzmHlPOefJlEMxFYykA4MdP888iyV+yUVTJKnEOAUCv0XO0dYF4dn2+JgKxxshYO9BQ6GmQS0rLpwIPvHISMaSej4XCxN0Nb9e+eYSgrBe5Qay2kviK3rakuN3bfUtqKE/XV6l7wo1G10kd+3VCuFtkddfMoWejAmurCiP3YnzusK8umh1XNOpEl/1qwOHW6hvEbNupsf1Lzz+uJ8YVgjtNkl0syLY5v2DVk9uomSElNJt28qGLbeiGVdROE4xS7LsefPq4qe8NXRE+/nQN0SqSUA/mg89Dt+nEl1KIZMrwMx564qWZ6l/+B5Y7G+4m/BDxM3iMRC2eL8tya4TIH7tAxuTw/a3qkAm1GZkQDbnM+bnwSuFcy56PvTJcxJ9Znz/oYCtoSI1tbrGzX7nxvZFk1si5Zsq69nW/2Tta3TYsyK0V3RsETolFWEirquiFNqD/L2Hy6qzYTI3IaMPXmAz+fSfiZjRc8eoSaiLUNXrs9PUa5NujfX+kWFYL/ZRrAvTlGw7ICk/1xx/osS5f+kR/k/bTkTQLHqfA1yQNovda9Na7VLJdYKHznzP3cXbUbRkLIcbTJy73skr2U1VsvYM82/yIv2m+1F++LQol0IVlOWTJ5Ur/vbRvS0ZtFvRFhuwlhuibKGepQ1PCXKSj3VbBBI04U5p0pY15f5UaCwqOtLom1T1wefAaopnrufmbbivP/wrh8GxZFeEiETAz6aIOEyNWlZNKoffdG4D0Td4opVGeIeN7nlVn7g4sOa2No4qUoKSlbwUiVes7xnp/Fl3quzjFoBX76Wq8hBblWAcSMWug8XNVVdjjcaLq/B7/ActBqKtTRyREg0q9hj0aGlFm7lVpZ9NjjdnhRQ2UrHzGaW7H/5LJA5JTJbY0E2wS2TYe5Qm4P5mCcFU3lNeBaqot8p4YpxzDOq6Wu9rSFQtXqF8ZLBi6mWePD6xi64xZjYnOIYYj8qYTyZqHQsYpqOQSkngLtdcMoW9oAmYIJb407277HNY/PS/RJzz8L9qpjkTPyqZKLMpanH1qY3ic/WZsplc9lWHhtb7rHhmj02Qu1knahaHiSPifaQmrlBx1PYdlp4VXuOaJ5jDYwH71ik6p6UwNUS1UWHbHWA8egkXrEI5ZjlnblZmYavmSQ/NoG7Jybwon7TY2OUfK/6zJ90hl6hU32WdKowUir1oj+v7ho7YbCwlePn7bBLA4nKLyIiz1CGHK8ZuUpUjDV+q9ib9hHKDScRQjOcoo5T2NMzMxBiU5kgSRd7kYUeeiTSTMzQZXr9ZXrVJZULlxzw7i5ZUuolT3OHXBpJsZVetEik4/cAhZXAvw1jNy4C/zaZ9XLw1//3P8o7elZWgbfP6Tr/KO8b398KaCchv5WbF7W6r5IjrJ5Q9JqZcMwP6yCvRJTYayBd6/LmId12LebukDYp3mB7kw6mTss0uWESzAFTbidDqub9D3lWIkqtNYhyPUS3XaZcB6KJxGuzUruFqc0Y5mCMtoGT5bslG+WHBlT1tu9kz7Gkz5Xw0oxkc5hONuh7x+5kjurkRPvfdXGjw/S/pvyk2/0eeDnwRirFUp3iJZ2KdHUqetCpB52S9JToVDnS1lm3naCsVZ1tI0fL9aruONiDXh1Er3iqVyW16uqrVfdBrT5/tVqyaj9by1HUo2C1FhUjUMGpLdrfcBXCmkX7e4/0tadxvDCJ8q4zcIdxb/jbvzsDb53V7prsqDpvhmGqyS66MjWDTMqTb+RXF+505g99d3JX/KHfb6sEpkkW4+sn+I9/IPi7QXJUlUxHIIvJkLK0pGjoeZNyMqRNAnnJULFkAmOdKN54x/WAmwBCdrKBrTalHIRBKSUtkcslz6HGAocaelG8qrxLPs7lQKFYZDzR3qgsy9kqBqCzSqG2rCfzXFlkj8llrv00HYEQjxBvmi1qi1QQsrTTkbBVv4TznPVjlSeo1FnQlhRXkbmmq5lLGXQmzemW3t/S1G/7E3cptcbq3nvNFEU5ltUBv9iLfDdIaiaSb8vsV3P13sQewhzX8G2pJjwlqqGHoZpwTjWhSEYHVBNuTzXhKVENsVrUsWzHZoZFTAuT++CdMOOdsMw7H7V452P9QbL9SZ+2rGKyxfvkoXADY/nBm8VplpE//jwN4+/ew8BD5fjvTiedQeTGv6D3aOL5gfq9UbaYGApp5Es88t7Cj67cH7x/FMcY8pUo0HK/l71AByzkL4kbql6VghspAKQkeNXbOy2b2A7GmFoY/rOS3FEtYnNiUWYRsSLUYYv2uB4kkgepN3E7v74Hf1m+HAJdf1r4En9CTxBSF4q+RTb1v6Bf+m+xJDM5//4cCaRVQaPhp1+jTwm+FZRYAnjbYNBJAlz5fo8K1C0Cxu9YwL7EoEmSekJaNjaAiS3DtCjHWBN2qgt7Be5hfbhvuUjukHS8P+SX2DtxWobtULB302ImtliGvAGKYFvUxJxAp2zpIc83YWV3Gm3OyhUT058zeBU4mY7hOJgRAyyScp4SM3A0A0qm1KGmmHjXgckowfRqMg26SfgNLLJoj68K1tgZ/ZNqWKCxSxC16qUexwzhRszLnRYXaFLDwYaFU1hhrMEcG/ph8Too2zRsTWDNErDf//a/lYgOSohq4Gnuhmfyzi+DnSSiSyzVFtRpckyYyW3LttWqE4AZfCcbQ/dqSwPWw9NawqdwU78K1esCqqOhBqrW7lMd+x0y7g9TXI2pgVtAsoxhcJJsalErfUcQjFexY1KTiBzvFjb1ULXzqLa9vh/86k4m7t2nX4ef5MSA9Hcu273hNIom4WDy/veoid6/n//2XPSoI08oQ4UedN2SeSN573sv6CaP0tAMe9+TYMeqF0vYG3plbhiYgqPETQM7ZE7f3GSWY2Nm29zkhoa5X7KrQupb7TxUooitoj5ay/hqC/tkqXH3lzHpaSZUmY30SmSAAZ6uyPx1J3/Wz0p6aInP5yvToGRtaUntNHHJHvGgC3iA8B5tl91cFHNfYm+qNd+stj1R9jxfzD7CndU7JyUQcoWEWnAj2UfsghQaXYx+Jjsck0U6bTpMkl2kOyddNlRbJ9tsTbKZJXsn6Ze+d1LItPbm7JO8M+qmSZKjY9votC7ByIF2TtY3C1WYH2ySo9tbtm4r34mqeDPTcX5amyfbpybxoo4T89gEvsnSQ+lzqlTr5a60vbp/LEF4aqsPM1tprjGWNStc7wu7uVtURM7TQ847WeR2yl51X8t9yXKTc/WAq8hFeZzAOXaBLg37xF5tUDE+nI8OX8PYkGkPDE9o1Uv24ra6EhuXxfkyEedTEVF6Mx2NvSCNd2ivKXp5SqIlexft9+lqrRpE+/0pira21w1uFK5Q9P5SBR6+V2GH18sCFcmrbto3yS61nkz2xMSLUJO0nP5WYQp+uKSccnKsKptuVYxil+XzGsOJrcfMy9pyiNGblY6XKTkyv2a1tHtbJ9O6D2nzgitCbX5S0h6cpG43M+W2Tkra/gnJullU7SYj9NikXfE609xkYrP0PlOy9ftMDzHzUtuUlln3G6OqcoheFZOIXqksolfaaURPTbbccQzqMOLYzLSyvDnMNAkjnBAbTjtHkjbnqiK3VTlW8Pa5OqmR3erQmC2+aFktO7Cc2iCF8ZLJmG3ahm0TYrI0vdUi0KZjHksupKuq9FZVqDJNVA8yrb8M1SQeV5+h8paBMbewaWPAlKUpfY/ZTvP5raog5ZqQ8tMiVzOPT5qFu2CIB0dtZRKPqyyLx1WaxqOMXPeGrEGuMpFHBXq7bN6oGkbvBl6lL7jufTMH2YXOKVWfF3ehm4u70JNSjjlBTKZbmWpVsMJEW7MmNetVVTqrB706Bb2imWJVzCF1tiCtzgNpPShXmoIvUy5eVq5IW7WiB9b67BVrZV6rqleSDdYkcyzFPLfM5aimnWQwrp1stDuER7zu1U46b6Yhx7lyaHnSslfv9LCF63fBdqMdd3Uhq5m4bN07HPeO3ctpIAttwA0gslk5g41M25Ek0Ve8LyRaxPT1za/X/qfVuPayZyW4JTdtDC70HV1fZhUTl/8tufq57/Yn7mik00PUvZBFv4fYGpKzDiDyFn2NZo82hybcBpqwApql2dK0sdHa03yf6FRve3Ny294I3nwTuLM/hd983dZufLfHTeLipV0UMwtbnHPTNNLNxMXTmOZSnm+QvgPnEKMaiJGKDE8PkGWQ0SI2lYgxR3P7N8knXGE6gGksN/gCAWMb2pgmXvlMKVwHL40FC18gXnw/eOWzThk6eGmkl/oC8TL2g1c+H80AvZd75886o0cayGmkoPkCkTNxi4s0UbbhUIM4dgIca5mmaTnExtShlulwQxM6o+At6tiaRr6ZLxAx3DIIAYui3MScYsqMNFWJ44CdWaZlmdqZSohZ8BV18NLIJ/NF4sWpaRmWJXKQwLAviXyJ1FCUyeRtxMEUG7oWlk8u8/rmOqHH90OvF5/lsq3Beb8/iHVYUyObzJeJqeEY2MSYCHBN6iRLeVrcwsQklsUdjtly/z+fTD8Mh547D0VkohNPhtpPvWIb9ri/qXpZi+movAl05WL1zsDrfGiHMyTT7C9WOJcc/6U/G0+DD3FzUUeWiyeYjgCteUr7uCiXrBkHeoX3vN2pdgz9Llw48gNZzMidqSC1247C4TT23nUmnhdchR1XCCFF7NbvxgMZwZKzImKjbrpa1TLlyzsSMSYtGYQT/xdQ3rwqbLNVzA38kassNvbG4jSKxp541Dy0DufG0H4/6C8+beGNCGHw93HXjeHS6xuCnqBr9A16fe0/JiL9cQd9jQYybAff//gHwr5TL05QV96I9auvFk6P4OzZAAqACx49pvNfrisLHlWULC/MlSrRhNPq+A1CKiWz6Nvy11ylF13BA1QAOHfR6uhlZULisyTvs4hUntnqSzFMOUu3cGyYl1hcf/KkPJ84yN4BsNnEwZp12Tq5ihenLQorizcZRN7kwzSm1jBSZ1/IsWK43+HI9rjkwzGWHi4PAZlVuFjb42KXkiCm/X83kZgGTntPZXc8CFQ7DwqN5DW6lO7aNcFnu6JrutPsmu5OoGsqT1nbJ9bzmDfFCQKtUfpD17NmTIeT1HBbAFOcCdAD5qHv2QQYvg0wxZC/HjAPUf9NgDG2AYYXnGg9YB6C+psAY24DjFHwovWAeYjdr1zr0SIEU8ow5SY1iGEaL5oi9H6XetibYvX6+o2f7lsdnCO1ruxsoJ2KVZazN8R0lqNt6LstWUe613d7vQkLog63FHV4NMvLdpN21UunapA9jDaCCHRPWqf43vfCvteeuH/6f1BLBwh/foIAWhgAAL7WAABQSwECFAAUAAgACAAhroZDRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIACGuhkN/foIAWhgAAL7WAAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAA8hgAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" /> |