Simulation: Wasserbehälter mit Zu- und Abfluss (Fließgleichgewicht / beschränktes Wachstum): Unterschied zwischen den Versionen
Aus Schulphysikwiki
Zeile 1: | Zeile 1: | ||
− | <ggb_applet width="1000" height="800" version="4.2" ggbBase64=" | + | <ggb_applet width="1000" height="800" version="4.2" ggbBase64="UEsDBBQACAAIAD2uhkMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACAA9roZDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1d65LbxpX+7TxFh6lKjewh1Vdc7FFSo6tVNUlUkuPJ7mozBZIgCYsEaALUcOzobfIA+2sfYP1ie7obAIkLL80hOUNpEmtAgkCj+3znfH36dPfB2Z9noyH66E/iIAqfNEgLN5AfdqJuEPafNKZJr+k0/vyn3531/ajvtyce6kWTkZc8afAWbczvg28tC8ubg+6TRq/Xw34Pt5t+r+s2ebtnNT3q0KYtOqzn9DyOGVyJZnHwbRj91Rv58djr+O86A3/kXUQdL1FlDpJk/O3jx9fX163s6a1o0n/c77dbs7jbQFDzMH7SSD98C8UVbrpm6nKKMXn8j79c6OKbQRgnXtjxG0i2ahr86XdfnV0HYTe6RtdBNxmADDCH2g38oD+AdrqW1UCP5VVjaOzY7yTBRz+Gexe+qkYno3FDXeaF8vev9Cc0zNvTQN3gY9D1J08auEVdRi2XMmyrv04DRZPAD5P0WpI+83FW2tnHwL/WxcpP6om8gZIoGrY9WSL6178QxRSjU3kg+kDhYFn6J6zPYaYPVB+4Pgh9Dde3c30p19dwfQ1ngHcQB+2hDwh7wxhEGIS9CcCXf4+Tm6Gv6pOemLeenEKb4uAXuJhhkK+WuZQ2PpX/LPjH5Q+Pi40kC09NJtOVD9W/LzwzeyIBUWz+SHqrhrJ5M0X1mVTUP9NZwJJIrP6FiARJHRiS8BAFkzzw9Kulv9rqQLA+kPRHR/5x5RfrdsDlQhQLsEEz1H/qXxW0VY/UKO34iWwVaOUnLteTxQdSKk4Jd04JnD11Ba080+KHbiXHrr37djJ+Spg4FcQ9tXG1mTau5Rl9JOlx9+KvkcTZ44wFz9IKoXggr02JIfFHsawic5FQmk+QAFOybCAwgYgLB1uaFEVEIC7gK3GQJY82YtKKOGLIQfI6wpDiPeHAH26rwiwkoDB51ta2hhhHgiGi6JIjkANSlAtSoQyuEAIJuEk+nlBZBLMQt+AbcxCHOkq2taWpM7gRvsPjKWIEMXkzsRG1kCXLI1yyuOXIqkORFFkYWUryQNhA1pqo4XoHMdkasL5xFAe5dAf+cJwJSckxCMfTpCC7zqibfUyicY6hurobdT48zWWd/uJ7cbJ4GXRV8w5Rd12F/vKrs6HX9ofgVryTioDQR28oyVI9oReFCcqUgOpz/Yk3HgSd+J2fJHBXjH7yPnoXXuLPXsLVcfZs9WjVj5/5084w6AZe+CNoiSxCFojm3bpU0qxbtx1XP6YTRZPuu5sYdAfN/tOfRKB5lLRcDoTKbIsQzkCCN+kvDm4RZtmuazsOdhwQdNzxpM6LlkOFazGBGdxAmA3ccFP/m5s+2f+YN82b+XmDUH8S5FjIz6/jp9Gwm/88joIweeaNk+lE+WhQu4ls03nYH/pKtqoHA2+n86Edzd5poTJd1g83Y/iGdQXa/WfRMJogMEkqoK/qp8e2PqprZM3yq7C6BqsrcIZS0M1/Jy5VV6hjWx/VVQC7rlraUpK1EmdPCWKkvxe1TOmMdJ2mYZBcZF+SoPMhbSnRN/x1OmqDuqViK5ZJdlemrDR4cXHyD6lP0t2VX/5j8csPAz/xpIcnKBOuY9sC/lLXcbSmlnT07IM/Cf2hVsQQlGEaTWNtGrl6f3U2jf03XjI4D7tv/T4Y9RtPEmsCldOXzivY9TvBCG7U51Ppe1Iz/g6N1We7fn/iZ0IaKr9aY6N+xYtmUTmtino5iUavw48/gNpVqgrO9QRUESoh2adYvbPHWWvP4s4kGEvdR23oBz74c/UGGXrQi3QX7RtEE0MhHVVkEiQSpOdejC69OPYnbX/w27+HII1R1PWHw2/RiyBET7OTDeRNk0EE2gkinADI6K/QspEXhugk7gymw/HgJg4+XAcfglbXfwQVAIqRqove+WMgBVAB4HWwH0kwQ38EPjpKlBWF05EPBeYKBQOMoTeFP7/9O+z7aiwAzZ+mAiSilcpQ6haK2j8BNZZ1cg4k/L7E7JAHVVYaRlLj8m6gjouAq9L+AtJIH51hl6ECZDfWaj72fW0hSUoMaAzFKV5ZoNe03Wsl8GY6Gvthffvt+9Z8WcCuBXBZbrWw3BajxKHUwZL7nc9fBt2yDDiuhT71AvVNCwxSbTbBpg3/W68X+wmagYMB/dnNk0ZTrBJLPJTDcjQKpLsETxl5M1ntRu46SNuVpTU5fHJsizvC4Q63stKpov9eMPPznhsoJ/gFKL3Iz/OOMAHf5gOM7WPVW+eSlx++D7pdP9yt3c7GE3iWLCSV+Ctw4WZjCZfy3lZj+mo5phtr6erqDNLqXKLH6NUmVRpUCJa3KGOYC2GD62bbLr9NBVc+W91Xfn5TtMDFBLcRfEPLAv+Sf/62rup2UZEEZ9y1Wq7lqv85Nt27JNjddnzdijaQW3JetdHYDP5FTssojeWMpglrllPXwUlsS22s8MbblDcE+hpBmcAeXe+fJ/zRJhTytgwaOO1744zOZhpyG7NYrSHzPpETWyEOfVitBuHbmQ0MHmB0mnv/P/oTcIt7yAt/gbG3H5qJ7fVlUBEc3t6hyMa5t2bXOvOiGNcYmHM3BrYb83p9GaUG1uyAhQ3Avt5uYlryvnKvQJ0WtyzsEsIxJTAs3qkDcXlFchfiGwRqA1UlGDVRXm91YpPKy6LKfrxttbgtKGGWiyn8t1vnZ173K7KxA1StJbhAHMYYDmacUmFTcSsXqFrNUVrLkwGIGJ7/COpKN6rrqKaqjFJuUVdYMDwSlN2iqp1oBAP6LgpVuPmNDJA15mFODz9pzM5nQZw+YZpkZ891QentlVaoSFvehvPGGrJeQjmEaspRxzS0toqzWS1nU00h1i0Jm9QTdgwNV9GV8+Ewuva7lbCOCgfFis+sjM/U8ZeFjkzJS8YbCw3RZ0uRpDWsk+rZOajZSZO0KJhwMbpyiprkUaOIU1UNiwC+Xgfg+t52HXb1XQY2F7LtZJ0G2ZuUL88z1jmZnZw/OkU38FcatqlgZUFbiVZOoPX1oa0PK2SLdyXbXIFrRoz7kfQ5XRQ0iLirhW0qaCjnsHKe80+TaAZiKxnIBAa6fx55lsn9nEomKVIIcAqF/oudImyKw7NtcXA0Do7GwdkCB2Gl8Sx7VziQ/eOQE40idHwqVyYY6/6dc0wtheA9So0VtBfE1vWMpcbuWmpbUcL+Or1zXhbqNrrI71qqtULboy4+ZQs9GJNdWNkfu5HnTQX59NDqOSfStD9r1kcOt1BesWPdLQ5q3vl9eb40rJHa7BFl5uWxTfuKrB7dxGmJmaTbVzUMu9uA5a6IwnXLXZbrzJ9XFzzhq4Mn/s+hviXWKwCC0XgYdIIkl+pQDpleh3LKXVeyOkn/wffHcnnF38IfJl4Yy3Wy5elvQ3CZBvdpFdyeGbS9YwE2pzKRAtucT5sfBa41zLno+9MlzEnNmfPuhgKOgojurNcXO/Y/N7ItmtoWrdhW38y2+kdrW8fFmDWju7JhydApqwkVdT0ZpzQe5O0/XLQzEyJzGxJ78gCfz6X9TMWKnj1CTURbwlSuz49Rrk26N9f6RY1gv9lGsC+OUbDsgKT/XHP+iwrl/2RG+T9tORNAse58BTkg7Ve616a92qWSS4XvOfM/9xZtRtOQthxjMvLueiRvZDV2S+yZ5l8URfvN9qJ9cWjRLgSrKUsnT+qX/W0jerpj0W9EWF7KWF6FsoZmlDU8JsrKPNV8EEizdTnHSliX58VRoLSoy3NibFOXB58B2lE8dz8zbeV5/+FNPwrLI700QiYHfDRFwmN60rJsVD8GsnEfiL7Fk6sy5D1eesu1+sDlhzWxtXFalQyUvOClSrxmdc+txpdFr84WOwV8+VKuMgd5dQHGjVjoLlzUTHU53mi4vAa/w3PQaijW0sg9QqJZxx6LDi11eKtmYdlngNP1UQGVL3TMbWbJ9pfPApljIrM1FuQI1nIdajNOscUt2zommKpLwvNQFf1OC1eOY55RQ1/r7Q4CVasXGC8ZvFh6iQff2djFBfBd4bqECiYckq7+Ji2Huw525DZVi7u2XI6y6JMt7ABNsQSvxpvs32Gbh+aV9yWnnqX3VTPHmbpV6TyZRzOHrU2vUpetzbTH5rGtHDa23GHDO3bYCHXSZaJ6dZA6pspDdkwNJo7CtrPCq9pzj6Y51sB48H5Fqe5RCVyvUF30x1bHF++dxGvWoNxneedeVq7ha+bI75vAvSMTeFm/6X1jlGKv+iyYdIZ+qVN9lnaquFWd8P55ddfYicKFnRw/b4ddFkfUbhGRWYZy5PiOkatFRaxxW+XOtI9QbjSJEZrhDHWcwZ6dmYEQm9oESbbWiyz00COZZGKGzrPrz7Orzqlat+SCc3fO0lLPeZY55FykxdY60TKNTtADFFYC/zZKvKQM/Nt00svFX//f/2jv6FlVBd4+p+v8o6JrfHcLoN2U/FZuXTTqvsqOsJ1au21hjrFjc4sTx5EJxg7rHq/EkzhrAF3r8BYB3XYh5u0BbVK8wd4mwxXtJeyyrTR3PeJZCSm110DKzSDddpHyLiBNdynszEidFhGYuMS2OGYCZ/N7FaD5oRHVve071XMs6XMVvjQn2QKokw363rE3mcM6OdL+d13Y6DD9r6U+mXa/B14NvJFKsUyneEWnYlOdih906kGnFD2lOlWNtHXW7SaoalVn28jRcr3adRzsQa8Oolc806uKWnXN1ar7oFafv1otWbSfL+Uo61G4WovKEajw2Nbsb7gIYc2a/b1H+trTJFmYRHnXGXjDpDf87d+dgb/Oam+b6qg+bYaw9EwnXZmZQaXkKTbyqzNvOguGgTe5Kf/Q77d1+tI0h/HlE/zHPxD83SA96kpmI5DFVEh5UlI09P1JNRXSJoG8dKxYMYGxSRRvfMvlgJsAQm5lA1vtSTkIg1JKWjKVS5FDxQKHCrMoXl3WpQAXUqBQLBOeGO9TVuVsFQQwWaSws6Qn80xZZI+5ZS6DLBuBFI8Ub5YsaotMEKq045GwvXsJFznrxzpPUKuzpC0lrjJzTVczlzboXJrTLb2/pYnf9ifuSmaN1b33mimKaiyrA36xHwdemNZMpt5Wya/m6r2JPUQFruHbUk10TFRDD0M10ZxqIpmLDqgm2p5qomOiGmK3iGDMxY4jXNvhnN0F8UQ58URV4vloRDwfdx8l25/4acsp5Fq0xZ0SUbSBtfzgz5Isy8gff55GyXfvYeShU/x3p5POIPaSX9B7NPGDUP/eqJpMAoU0iiXe8+4iiC+8H/x/lAcZ6o0o0PKgl78/ByzkL6kfqt+UghsZAKQieN3duy2HOC7GmNoY/m+nuaNaxOHEpswm2KHEZYv2uB4kUgSpN/E6v74Hh1m9GwJdflr4knxCTxDSF8rORTX1v6Bj+m+5JDM9//4USaR1QaPhp1/jTym+NZxYAXjbaNBRAlz7eo8a1G1CCXZt23GJoGmOejnPjQWxbFtYNuUYG8JOTWGvwT3aHe5brpI7JB3vD/kl9k7clnBcCvZu2czCNsuRF6AIjk0tzAlVKxxMkOebsLI3jTdn5Zqp6c8ZvBqcLLkgGzPomolFOc+IGTiaASVT6lKruDxhPUyiAtOryTTspvE3sMiyPb4qWWNn9E9qYIHiNlHUund63GcIN2Je7ra4RJMKFwsbZ7DCYIO5DvTD8m1QjiUcQ2CtCrDf//a/tYgOKoga4GndDs/0lV+CHSWiSyzVkdRpcUyYxR3bcXTSOIAZfCcHQ/fqKAM2w9NewqdwU78O1csSqqOhAar27ec69jtm3B+muB5TgVtAsoxhInem2dTOXhHUoi52LWoRF1xjG1tmqDpFVNt+Pwh/9SYT7+bTr8NPamZA+Tvn7d5wGseTaDB5/3vURO/fz397LnvUkS+VoUYPul7FvJG6970fdtNHGWiGs+9ZsPuqF0vYG3plLgSmQq4mEzB2ntM3t5jtOpg5MKrmwsDcz9lFKfWtcR4qWcRWYR+jhXw7i/vkqXH3lzHpaS5UlY30QmaAAZ6uyfx1o342z0p6aInPJyyzqOTO0pI6WeKSPeJBF/AA4T3aLru5LOauxN7USQ3ZzjZFOfN8MfsId9ZvnVRAqCUSesWNYh+5DVJqdDn6mW5xTFfptOkwTXaRbZ302FDvnWyzNclmlmyepF/65kkp0503Z5/knVM3TZMc3bedTusSjBxo6+TupqFKE4RNcu82l63by3ekKt7MdZwf1+7J9rFJvKzjxLpvAt9k7aHyOXWq9WpX2l7dP1YgPLblh7mtNNcYy5olrneF3dwtKiPnmyHnHy1yt8pedVfrfclyk/PMgKvJRXk/gXOdEl0K58hebVAzPpyPDl/D2JAZDwyPaNlL/uK2XSU2rorzZSrOpzKi9GY6GvthFu8wXlT08phES/Yu2u+z5Vo7EO33xyjanb1ucKNwhab3lzrw8L0OO7xeFqhIX3XTvkq3qfVUticmX4SapuUMtgpT8MMl5VSTY3XZdOtiFLdZP28wnNh6zLysLYcYvdnZeJmSe+bXrJZ2b+tsWnchbV5yRWSezWOS9uAodbuZK7d9VNIOjkjWzbJqNxmh903aNa8zLUwmNivvMyVbv8/0EDMvO5vSsnb9xqi6HKIX5SSiFzqL6IVxGtHjki1vuZhS7AqL2y6xaZor1HVtC9uOXEdMLVJ6BcKdJc65qEluVY0VvH2uTxqktzo0ZosvWtbLDmx3Z5BaJfQy23Ft28WcCYod6pD7kgzpoi7BVR2ozBDUg8zqLwM1DcftlAML+GXDt3ttqMUUV3WgckNQ+XGxK2thTJlLgVhdajM3S2NVxFKtc75Heawu8kweF1kqjyp23SuyBrvaZB41+N1m/0bdSPp28NW6g+teOXOQneicUv15cSe6tbgTPS3lPieJyXUrV60aXpgYa9Zkx3pVl9LqQa+OQa9orlg100idLUir80BaD8qVpeHLlYtXlSs2Vq34gbU+e8Vamduq7q1kgzUJHSthzy3zOeqZJxWPa6d77Q7hE697u5PJy2nI/Vw8tDxx2at3ZtjC9bfBdqNNd7tC1jB52brXOO4du5fTUBXagBtAZLNqFhuVuiNNpK95X0q0jOnrq18vg0+rce3lz0pxS2/aGFzoO7qByiwmL/9bevXzwOtPvNHIpIfY9VoW8x5ia0hOOoDIW/Q1mj3aHJpoG2iiGmiWZkwzxsZoW/NdolO/880t7HwjePN94O7+FH7zpVu347s97hMnuMUoZja2OeeWJbL9xOXTmBbCRRtk8MAFxKgBYqQmy9MDZDlktIxNLWLMNdwBToo5V5gJYAYrDr5AwNiGNmaIVzFZCjfBy2DNwheIF98PXsXEU8IEL4MMU18gXmI/eBVT0gzQe7V9/qQzemSAnEEWmi8QOQu3uMwU5QiXCuI6KXCsZVmW7RIHyxksy+XCEDpR8hZNbM0g5cwXiBhuCULAoii3MKeYMpFlK3FdsDPbsm3LOFkJsUq+ogleBillvki8OLVsYdsyDQkM+3j6Yl63ZVGm8rcRF1MsTC2smF/m9dVlSo/vh34vOSkkXIPzQX+QmLCmQUKZLxNT4QpsYUwkuBZ109U8LW5jYhHb5i7HbLn/X0yoH0VD35uHInLRySdD7ad+pW173ONUv7bFcvXaE7pywXpn4Hc+tKMZUrn2F6VeyJD/MpiNp+GHpLmoJMvlE05HANc8r31SFky+qPNAr/GetztTj2HQhQtHQaiKGXkzHaX22nE0nCb+u87E98OLqONJIWSIXQfdZKBCWGpaRG7WzVas2pZ6g0cqxrQlg2gS/ALaW9TnbbaLeWEw8rTJJv5Ynkbx2JePmsfW4dwY2h+E/cWnLbwWIQr/Pu56CVx6eUXQE3SJvkGvL4PHROZA7qCv0UDF7eD7H/9A2Hf67Qn6yiu5hvXVwukRnD0ZQAFwwaPHdP7LZW3Bo5qS1YWFUhWacFofv0FI52WWnVvxmovsogt4gI4AFy5aHb6sTUp8kiZ/lqHKE0d/KccpZ9k2jg1zE8vrj56V5zMH+YsANps5WLM22yRf8eK8RWl18SajyKtinMYyGkea7A25rxjudzyyPS7FeIxthstDRGYVLvb2uDiVRIhZ/99NJWaA097T2d0fBOqdB41G+jZdSm/bNcFnp6ZrujHsmm6OoGuqzlk7R9bzWFflGQKjYfpD17NmUIfT9HBbAFOeCjAD5qHv2QQYvg0w5Zi/GTAPYf9NgBHbAMNLTrQZMA9R/U2AsbYBRpS8aDNgHoL3Kxd7tAjBlDJMuUUFEZZ40ZSx95vMw94Uq9eXb4Js7+rgFOmFZScD43Ssqpy9IWayHm1D323JQtK9vuDrTVQSdbSlqKN7s77sdtIuv3jK3YnoYbARxqB6yjjl974f9f32xPvT/wNQSwcIeOv4IWoYAADA1gAAUEsBAhQAFAAIAAgAPa6GQ0XM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACAA9roZDeOv4IWoYAADA1gAADAAAAAAAAAAAAAAAAABeAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAAIZAAAAAA==" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" /> |