Simulation: Wasserbehälter mit Zu- und Abfluss (Fließgleichgewicht / beschränktes Wachstum): Unterschied zwischen den Versionen
Aus Schulphysikwiki
Zeile 1: | Zeile 1: | ||
− | <ggb_applet width="1000" height=" | + | <ggb_applet width="1000" height="750" version="4.2" ggbBase64="UEsDBBQACAAIAFdZikMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACABXWYpDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1d65LbNpb+nXkKrKZqqp201LiTTOyZal/icVVnxmVn0rOz3nFREiUxlkRFpOzuZPw28wD7ax9g82J7AJAUby2RulmKu8puShQIAuc7NxwABw//dDMZo/fePPSD6aMW6eAW8qa9oO9Ph49ai2jQtlt/+uPvHg69YOh15y4aBPOJGz1q8Q5tLZ+Dbx2hH/b7j1qDwQB7A9xte4O+0+bdgWy71KZtS/TYwB64HDMoiW5C/+tp8Bd34oUzt+e97o28iXsV9NxI1zmKotnXFxcfPnzoJG/vBPPhxXDY7dyE/RaClk/DR634w9dQXe6hD0wXpxiTi79/d2Wqb/vTMHKnPa+FVK8W/h9/98XDD/60H3xAH/x+NAIaYA6tG3n+cAT9tB2rhS5UqRl0dub1Iv+9F8Kzma+609Fk1tLF3Kn6/QvzCY3T/rRQ33/v9735oxbuUIdR6VCGLf3XbqFg7nvTKC5L4ndeJLU9fO97H0y16pN+I2+hKAjGXVfViP71L0QxxehcXYi5ULhIaX7C5h5m5kLNhZuLMGW4eZybotyU4aYMZ4C3H/rdsQcIu+MQSOhPB3OAL/0eRrdjT7cnvrHsPTmHPoX+z1CYYaCvobmiNj5X/yX85+qHi3wnSeat0Xyx8qXm98w7kzcSzGj9V9KtOsqW3RTld1JR/U47gyVRWP0LEQWSvjCk4CEaJnXh8Vdpvlr6QrC5kPhHW/1x1Be5HXApEUUGNuiG/qf/l0Fb9UqD0o7fyFaBVnzj3XySfSGl4pxw+5zA3XNH0NI7JT90LzlW2mjH/eQMWJOQcwv6ayXaLvNSC1fqGXMl8XX35K+gxMOLRAs+jBuEwpEqGyuGyJuEqonMQUJzPkECRElaoMAEIg5cLCVSFBGBuICvxEZSXS3ElBRxxJCNVDnCkNZ7woY/3NKVSSSgMnXXMrKGGEeCIaLVJUdAB6RVLlCFMighBBLwkHo9oaoKJhGX8I3ZiEMblba1lKgzeBC+w+spYgQx9TCxEJVIqvoIV1pc2qrpUCVFEiOpKQ8KG5S1UdRQ3kZM9QakbxaEfkrdkTeeJUTSdPSns0WUo11v0k8+RsEsxVCX7ge9d49TWse/eG4YZYuBqVoaRGO6cvbyi4djt+uNwa14rRgBoffuWClL/YZBMI1QwgTU3BvO3dnI74WvvSiCp0L0o/vevXIj7+ZbKB0m79av1nb8obfojf2+705/AC5RVagK0dKsKx2RmHWLcfOaXhDM+69vQ+AddPMPbx4ozpMdy3GIkIxZwmYY5Pw2/knSDqZMckGxZUkBlA57rmJ60RFcOhITCztg4CT8clv5EwHlqN/svU+75t54aYfQcO6nWKjPL8LHwbif/jwL/Gn0xJ1Fi7n20QDfuerT5XQ49jRttQUDb6f3rhvcvDZEZaau729n8A2bBnSHT4JxMEcgklSArRrG16656jKqZWkprMtgXQInKPn99HfiUF1CX7vmqksB7KZpcU9J0kucvMUPkfme5zLNM8p1Wkz96Cr5Evm9d3FPiXngL4tJF9gtJlu+TrK7OlWjwYsLo78rflLurvryn9kv34+8yFUenqBMOLZlCfhLHds2nFrg0YfvvPnUGxtGnAIzLIJFaEQjZe8vHi5C76UbjS6n/VfeEIT6pasUawSNM0WXDex7PX8CD5r7MfVdxRl/g86au31vOPcSIo21X22w0b/irFiUbuuqvp0HkxfT998D25WaCs71HFgRGqG0T755Dy+S3j4Me3N/pngfdcEOvPOW7A00dMGK9LPyDaQJoZKerjLyIwXSUzdE124YevOuN/r132OgxiToe+Px1+iZP0WPk5st5C6iUQDcCSScA8joL9CziTudorOwN1qMZ6Pb0H/3wX/nd/reA2gAqBjFuui1NwOlACwAeh3kRymYsTcBHx1FWoqmi4kHFaYM9XIxmXnT0a//O/L0QAD6voipJzsx/RRfoaD7I6jFIj8uQYTf7xA55EJzNXeRWLDcW2hfVpXq2r4DSpi7JMEtQQQU3cxUgEA7e0Y+olgtoBlUqLVKRrnGva7Z//Gv/54OSwTQ8rFvCtBPTQEYYo7dBfyppoE4NhpsQoFeMAHh6aOpdu1eKmPUWroULn7UurkEzRv3YREldy9NRfHjJVJqq5ZS4bK1hkwZjZOlE6HGjOlrbMaW1MIrZeavg0HoRehGW8/bR622rCQlrk1KUkXKWLOG6j1tqa3GrWkb+tmEX0ysQZFDme5cO83dglLOsefNbO6FKiSTEOq7V27/Cry1G2jjJfoKnbVxx0JfojyrniP8oJVH4mINRKbizWCStkZJXbrmUhOjEgwZYlpgcndLzJWyfl0Ub0HsDpNEOo5k2LIFPS5Z34e+e16kAa9W8/GAbyVPmG4TvLWpC8cqxoYmvhr7QD0T90Y1rJWOA5Qa1hzDeQe8cpsSKqklKbG4EXwKvRAOZhwzacHQVg1uB/6Nl3rl4E74P4O7lve9lk5uBOOWd1MQRK1LUlKrD3/2+31vulONXBb6USzw1+gCPa8S5SKQo5Ktoh0HSMApd1SEUrKGfFqfh/Rzxde3eYdwjgXHtrQdm2Pnty9Mum1XJUpQpyOOy3fcfdf7JQYgW+qRcqfLhmUl4lktkigRluoQihMdQhMTHn86kJ7YkAFLmuJVrCkEuARQJ+iLvvvPM/6gjtJ4VQQNJ5y6BzXRq8ch24jFag5ZuoecWBpxYfMtPcRKwMCpcWfLwfMP3hwctQFypz97/tCbNiPbi2u/PBTb3EgnYaKtFWqVeFGMKwTM/jQCthvxenEdxALW7oGEjUC+XtURLfVcyRCIjkNsbHPHJoI5VG4ja6WWXr8lqdPwFQK2gaYSjNoobbe+UafxqqqibwyNBzfCdghhVDKylTtRdneWbX9Lars85VYSprwOyi1q2YwI+LPbZk7iVp6NgMTw/gfQVlqrrZOKpmJBJOe2zQWnFrZ2yw2XCUXPbs4uH5yjW/irGt10lKgq2nCMyM0YkZsxIl+pqPEqRVw14C77t/sZfl/SLB2Bgs8NLZvSEeo5MBmX9q5NTECErQyIZKhMDxPWSKIaVIU18vEM0FkUhIttGNc4RFijmtZqQknZOmHVpDXZP61TXaDjR/hcrStozL9HqgbwHsnGcgwKdOu7jcnGjolsqVyT/RGNF4m2CbPx46TaHpntMcvYGaYMTTHAe6vuN6Xk44Pz31IVxlanXTf+K3bMnPmJjtfeUN0vTHUodnWJllNDguV8R/dt7GfdNeMRxjUmlOy+rdCRu414rGTZEJqnZ1gvx+Pgg9cvTe0uae04RaPj2Mv3VY2++OrRl/fT1DwSmhl4fzIb+z0/Sqk6VsOuF1M15W0aWZ4kf+d5M7W84a/T7+fuNFTrVIvTzw3BZQbcx2VwB82gHZwKsKmqEjGw7eWk5UngWqEZsx44vUMz0uaa8RM65LbGiNY1QGLHHmIt2aGx7NCS7Aybyc7wZGXntDRiWXKeFAVHxVZYxdxx31WBjKYS9GRDAcoiu25+v66IkKWMiD15aE+X1HyiAypPHqA2oh3RlG5Pj5Fubbo31/ZZBeG+2oRwz46RcOyASvmp0cnPSir5x2Yq+ccNCUmxsX2CHFAtl8xf21rt0qilskeumZ+6WZkwasRIRmNl4h7TUJlY6RKefanhZ3nSfbU56Z4dnHSZkCxlRu0SUZe0dMekraVw3FjjuCWVM26mcsanpHISTzAdRNFkYvxUFc71ZX4UpSTm+pI0lpnrw89j1AvN7WU6qLhUdnw7DKbFgVIcQFLjJRoT2mVm4qwoMz/4igffEfOIq2Y91TNu/MgH/YGrD2tCT7O4KQnN04rv5NE1s+dbDc/yPpUldiqXdy+VKKoYtyr+dlgHcQMdw3Gt0eYa/A6vYlZDsamW+BRItCuUR9bdpMLpVKzb+A3A9OGkcErXEaUiU1yxTX5DyJySLlstQJYFowJOBXc4l8Sy7FNCqbzgMo0D0W8MbdUgxCxnaORKvdpFHGj1Cr47xh7SrFHgtYce4EdZkgvbdqjjCAuLeJ5O2kI40sLcYcImeZcrs/8wBgucFne+f39sGbjWzpWaWFXOVcUMX+w1xbNELk38sS59G3tkXWYcMpdt5I+xu/0xvGN/jFA73jhlFq/oa8waZMei38QP2HROdFV/jmgSYA2MB7cbmnVPiuBtUgzvrY7uHR3FK1ZYHDO9Uy8q5fA1M8THRnD3xAhe5G96bBolb1Wf+PPe2CsYVePeKCuJO+UJ4Z9WG8deMM0shf5py0Cg8XsIphnweAm8lWuO1oJXCYxY45qqvR3vod5gHiJ0gxPgcYJ8cucGqNg2UkiSxU4kY6QnKsvBDbpMyl8mpS6pXrjjgPd2yeJaL3mSuuJSxNVWOsoqj4s/ABhWYv8qiNyoiP2reNbJwV/+3/8YB0mzQ5ELXj2l65ykvPu7cSRx+1W6TqwCV+7/yXvARV/31piunF/M5aF94JWIEXstZGv92jxkG68m3B6yNsU1dvVnMLM7DmWCE4ItDENTRySY5ZHE7Kgwo9ZazHgzzDZeS7sLzOLV8HXlzO4wtW2YAVpYcuIk60HzUsYPjZixia+1cr/TMmoEaaoHc6DNa1jImTtfwjbfzMdJtvcl+Zuo4u4Vo8A9mMl1EZzDmEmpPzW1kgdetVqTrVjCV7zEV2FTvgrv+eqer2K+oglflSNjvXVr38uc1ds00nO3Y3/PWSfKWTzhrBJj9ZszVv+esX77jHXHIvR0bUWRj6aruagYM5rueKrlaJYFrFmEvvfgXHcRRZl5j9e9kTuOBuNf/90beevEdtvkHtW534Q0SaBodfqKuBqdhCLfyS8euosbf+y789viD8Nh1+S7jJPeXj/Cf/g9wd+M4qtpZObz1aNkbJLNBJKmtERjz5uXM4HUCMQ9iUeJJYGYNYnBzXYSg6uPzo706bodFwfRp5SSjkpOmNeoIqNRRbMQXFXSER/nMv5RfI7apPE2Wl3P9opv3SqClYKWHdwvpx72t48W+pzsdlfdV+RLcqFskEtA13Y8FLR2T8G8zvmhyrMz7KjUjiZHUfMsVmseI5AptRbbDUDraJ6V1GwycVPMzLDaFK+ZHyhHqXrg5Xqh707jlqnEyzod65J96/B7kNMVfFNVERyTqqCHURXBUlUEKlUSqIpgc1URHJOqIFaHY5s4RGBic4kt9ikUR5AqjqCsON43Uhzvdz0I3KfqoB2RS/VlsU+qSIIa0vC9dxMlOSj+8NMiiL55A8OAfywG40UYzt3IMzdbZTmI4MlWvpoj1/F+eOV+7/296ObrQyxCb+4P0iNPQCy+i50/c7gFbiVUJyVqGxvtdGxiOxhjldQLW1acD6gDYkgsyiyiEtY6uVmn9ciQPDKDudv75Q14qTqdP7r+mPkSfUSPEDIFlUXQXf0vsCb/rRYqxvffnCMFr6loMv74S/gxxrdC0ZUA3jQgc5IAV57IUIG6RSjBjmXZoHNpMtlIOrZK82ZZQlqUY9wQdtoU9grcg93hvuHSskPq4P0hf4e8E6cjbIeCvEuLZewsUSZA2BaVmBPqKD3QBHleUsWX3Q1UccXk728ZsQpwpCMcBzMiQAwp54k2BsXMVOJw6lCp5rabYCNK2DyfL6b9OOwFYlgUwucFEexN/kkbiJ3YJoNGVUL2Y4awlrrlTocrNKlwcLwiIE4wyxwbjK86tceWwm4IrCwB+2d1GEwFoqMSog3wlNvhGR/NJNhJInqHpNqkY0kbc2k5DHPMjNtEWMd2HEdSDMZTCJVGvhGgVglQc+IQPDSsgvW6AOtk3ABWa/tEN1uN/j4hqLgaVGF1QBAtULFqAQ+2sUydYfCAiQXDU2xJsJLNULXzqHa9oT/9xZ3P3duPv4w/6ig8ylrMYDR/8x8wvH/zZvnb08W8N5p4ihkq+KDvluQb6WffeNN+/KoGnGHvOwXSsfLFHeobzDIXAlNwj7gU2CFL/c0lsxwbM9vm6oy++oxxya4KWU4bJzRSVWwWwWm0Vq5uCCdNcrq/1DyPU6LptJNXKhUJOK4VKaJu9c/N008enKLLmcAkglg3/6SdZNjYI71pht5AnAebJZNW1XwysrZN9jq2csa7iqz7iTxW7wLUhNZrB8xSFK0d1I4+xZHFQGS8Wy/eONil4zgtQ7IL0GVjsw2wy9ZkPbljHyD93PcBKpruvDv7DOCmqpfG2XaObdPOulQYB9oFuCt6m/Rz2V2A5Oj2Sa3blnaiLN5OeZyf1kbA7qlRvMjjRB4bwessytM+o8mZXTal3dX2sQThqeWGTWWlvUZYDr8wrxZ2S7eoiJzXDDnvZJE7tgWVtRbCkrtFzm0GXEXSw+MEzrEL6lLYJ5ajvjz+e5nM4+rDd1Wc4qydPXVbHyh1jpKb+ijyB5vkZn55TGtRLBGPANu7SpZbQdlkwuwlicM/WRI2pd6meyb3Sr09Eo/liJflyO3ouOl+4U3pmD3zKt6jXTfJkTwAmekKMjdecPbyELnbascqdy7idaI8L+PTW17GWyRfxgGbl+XFZprYcYDnbbzzbaATPjF1lGCceNNvFt4xld5pj/aZcxOvjOqQO2Qinn8hzmGiPlVRiB3vu9n1aDhdH9lmWyXkPPhoeLCT7KeHIbYseHbMYSdF69EJMnb7ZDnbPxlat4uM3ebi6Di7IqPlVTGl5VWS0/KqcVLLg8xM1Z3Ss0iHWFIym1PiwH8aJxSxbYoltYmUtnCwRfMeyydLAXNVmWmpPOR/9ZRerfNUCrmWDg5L1u0w0/vWSq8jixrtsCxARn/hjsxCScTB08CsRq2YbakKNtYQtsNMn98FWxw4qyts0unYlDGpDt7G8N9OEi4dt7QVMy5V4cYb4saPSgtKuyOJ5TCL2IwRTmITVRCng8OyJpnEVZpN4ipJJ1GGpv+WrIGmMqFEBTzbbGA4UD6JdceMHGT/M3ekLG+AtvSpNEeVUqIue6XcRcvsNW/MXPMtWesTZli6Z699sBdN+ati7qa3gfrq3auve/5a8hdL+YuX+StszF3hvf76PPhrZcalqsOrRmuSDZaCZBvmGjRhG729pRvvRNtbmpn6hwA1OcSEHOfCnbuzaT1/3QxaKL8NtLV2pO0K2IYJtdad5bd37L5dTHWlLXgASHZTTsaiM1TE2diN7lcULWL64u0v1/7H1bgO0nfFuMUP1QYX7Eff1wmuVPG/xqWf+u5w7k4m9T2Q3a8jaW4hNobkrAeIvEJfopsH9aEJNoEmqIDmzrBCY2wa7fn9lOhUpXJ56Scx7NE5MrQ6GzXeWKHrOQrurxnbqbZaxfQjck8LGoBcQYHs/oZkD/ZI9kaMvRXh95itSO0jdHIbHwmunwfA2R9560+zbWfS95gnAGBjMGCxsMXBu5Mi2U9evI1pbs6hRtoWnEOMNkCMVOTjuocshYwWsalEjDkNtxaTfKId1gSwBllxPkPAWE0Za4hXPkMOb4JXgy1SnyFefD945VOMiSZ4NUgr9hniJfaDVz4P0Qi90dkTznqTBw2Qa5CF6DNETuIOV+nBbOFQQRybJwtppZSW8uOpQ8HF5KIhdKLgLTaRtQYphz5DxHBHqGOlwPmXMALAlJm1z06HOw7ImSUtSxLZIHmFprks+IpN8GqQUuizxItTaQnLIja1YADI4+xCTkdSppP2EQdTLJpKWD690Iu317F6fDP2BtFZLsse3PeHo6iJ1myQT+jzxFSoU8IwJgpcSZ14kVmHW5ioED13OGZ3+//5cwyCYOy5y2hbSjr1Zmj9wiv1bY9b6KoXZEnHrKiiZBUmvZHXe9cNbpA+4iBL9dxZBN/6N7PF9F3UzjJJw/y+Z3GeZBXuPLPNl2Ks8ybZNFAzza8qf/JsvwwTpTnv680+rFkO3CT1b3buoxCVquOmv80PhGUjR73JiT3HiuF+Hb7NcckPeK1muNwPeVfhYm2Oi11KNJgo2H5MsQY47T1d3PEg4HbDYLyIvNe9uedNr4Keq1lOoxEf+ErptqYJPtsVpum2oWm6PQHTVJ73tk/M8si3xRBso3HQvelZ4zXjOHvbBsAUY63NgLm3PXWA4ZsAUwyqNgPmPq5aBxixCTC84EQ3A+Y+bFoHGLkJMKLgRTcD5j46unI2vUMIppRhyiUVREjxLMk8YK3CKkf26WICrVgeWRgVIzFp+q0Vq6GanTBJSiSuXuSU9Hrs96HgxJ/qaibujVn5We3SJuT84PejkV4Wppcaq4UkPGZkS+rtw3HcJu7JKJj7PwMoeZg2SX/kTv2J8a7DyJup2yiceepVy/WqcG8G/fenw+zbMsdfBtO/zfpuBEWv3xL0CF2jr9CLa/+CqOOzeuhLNNJr4eD7H35P2DfmlExTEv5eoOeZ2xO4ezaCCqDAgwu6/OW6suJJRc26YK5WjSbcNtevEDJHeqloer7MVVLoCl5gVlVSXFeBOKXhnk4F0kCJNFiQ8xtTDyqhEbEwJ1IShzjcMZuyZYdiahHJYdxHuCR3npQDw7VpCC/X7Vffh14w9Lpz94//D1BLBwivYSjy3hgAAAvVAABQSwECFAAUAAgACABXWYpDRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAFdZikOvYSjy3hgAAAvVAAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAdhkAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /> |