Aufgaben zur Geschwindigkeit als Vektor - Lösungen: Unterschied zwischen den Versionen

Aus Schulphysikwiki
Wechseln zu: Navigation, Suche
(2) Über den Fluss)
K (Lösungen)
Zeile 52: Zeile 52:
 
:'''b)''' Angenommen es herrscht Windstille. Wie lange dauert der Flug nun hin und zurück mindestens? Vergleiche mit dem Hin- und Rückflug bei Westwind!
 
:'''b)''' Angenommen es herrscht Windstille. Wie lange dauert der Flug nun hin und zurück mindestens? Vergleiche mit dem Hin- und Rückflug bei Westwind!
 
:'''c)''' Wie schnell muss das Flugzeug mit und gegen den Wind fliegen, damit die angegebene Reisezeit von 11h 10min eingehalten werden kann?
 
:'''c)''' Wie schnell muss das Flugzeug mit und gegen den Wind fliegen, damit die angegebene Reisezeit von 11h 10min eingehalten werden kann?
 
==[[Aufgaben zur Geschwindigkeit als Vektor - Lösungen|Lösungen]]==
 

Version vom 11. Oktober 2014, 23:28 Uhr

1) Eine Rolltreppe

Aufgabe Geschwindigkeit vektoriell Rolltreppe.png

a) Die horizontale und die vertikale Geschwindigkeitskomponente stehen senkrecht aufeinander. Sie bilden mit dem Geschwindigkeitsvektor ein rechtwinkliges Dreieck. Für die Komponenten gilt daher:

[math]\cos 35^\circ = \frac{v_x}{v}[/math]
[math]\sin 35^\circ = \frac{v_y}{v}[/math]

Woraus folgt:

[math]v_x = \cos 35^\circ \cdot v = 0{,}82 \cdot 80\,\rm \frac{cm}{s} = 66\,\rm \frac{cm}{s}[/math]
[math]v_y = \sin 35^\circ \cdot v = 0{,}57 \cdot 80\,\rm \frac{cm}{s} = 46\,\rm \frac{cm}{s}[/math]

b) Alexander steigt in der Sekunde um 66 cm an, also braucht er 23s um die 15 Höhenmeter zu überwinden:

[math]v_x = \frac{\Delta s}{\Delta t} \quad \Longleftrightarrow \quad 0{,}66\,\rm \frac{m}{s} = \frac{15\,\rm m}{\Delta t}[/math]

Nach der Zeit aufgelöst:

[math]\Delta t = \frac{15\,\rm m}{0{,}66\,\rm \frac{m}{s}} = 22{,}7\,\rm s[/math]

Oder man berechnet den schrägen Weg, also die Länge der Rolltreppe, den er mit 80cm/s zurücklegt.

2) Über den Fluss

Aufgabe Geschwindigkeit vektoriell Fluss.png

Wenn Eva senkrecht zur Wasserströmung paddelt, setzt sich ihre Geschwindigkeit relativ zum Ufer aus zwei zueinander senkrecht stehenden Komponenten zusammen.

a) Mit dem Satz des Pythagoras ergibt sich ihre Geschwindigkeit zu:

[math]v^2 = \left( 1\,\rm \frac{m}{s}\right)^2 + \left( 1{,}5\,\rm\frac{m}{s} \right)^2 =[/math]
[math]v= \sqrt{\left( 1\,\rm \frac{m}{s}\right)^2 + \left( 1{,}5\,\rm\frac{m}{s} \right)^2} = \sqrt{3{,}25\,\rm\frac{m^2}{s^2}} = 1{,}8 \,\rm\frac{m}{s}[/math]

b) Evas Geschwindigkeit quer zur Wasserströmung beträgt 1,5m/s. Daher braucht sie ca. 13s für die 20m bis zum anderen Ufer:

[math]v_y = \frac{\Delta s}{\Delta t} \quad \Longleftrightarrow \quad 1{,}5\,\rm \frac{m}{s} = \frac{20\,\rm m}{\Delta t}[/math]

Nach der Zeit aufgelöst ergibt sich:

[math]\Delta t = \frac{20\,\rm m}{1{,}5\,\rm \frac{m}{s}} = 13{,}3\,\rm s[/math]

c) Da sie 13,3s unterwegs ist und in jeder Sekunde 1m abgetrieben wird, wird sie insgesamt um 13,3m abgetrieben:

[math]v_x = \frac{\Delta s}{\Delta t} \quad \Longleftrightarrow \quad 1\,\rm \frac{m}{s} = \frac{\Delta s}{13{,}3\,\rm s}[/math]

Nach der Strecke aufgelöst ergibt sich:

[math]\Delta s = v\, \Delta t = 1\,\rm \frac{m}{s} \cdot 13{,}3\,\rm s = 30\,\rm m[/math]
Aufgabe Geschwindigkeit vektoriell Fluss schräg.png

d) Eva muss so schräg fahren, dass die Summe ihrer Geschwindigkeit relativ zum Wasser und der Strömungsgeschwindigkeit senkrecht zur Wasserströmung ist. (Dazu muss ihre Geschwindigkeitskomponente gegen die Wasserströmung gerade 1m/s betragen.)
Daraus ergibt sich für den Winkel [math]\beta[/math]:

[math]\sin \beta = \frac{1\,\rm \frac{m}{s}}{1{,}5\,\rm\frac{m}{s}} = 0{,}666[/math]
[math]\beta =42^\circ[/math]

Eva muss also um 42° von dem direkten Kurs abweichen.

e) Um die Fahrtdauer zu bestimmen, muss man die Geschwindigkeit v kennen. Wieder hilft der Satz des Pythagoras:

[math]\left(1{,}5\,\rm\frac{m}{s}\right)^2 = \left(1\,\rm\frac{m}{s}\right)^2 + v^2[/math]

Nach der Geschwindigkeit v auflösen:

[math]v = \sqrt{\left(1{,}5\,\rm\frac{m}{s}\right)^2 - \left(1\,\rm\frac{m}{s}\right)^2} =\sqrt{1{,}25\,\rm\frac{m^2}{s^2}} \approx 1{,}12\,\rm\frac{m}{s} [/math]

Nun kann man die Zeit berechnen:

[math]\Delta t = \frac{20\,\rm m}{1{,}12\,\rm \frac{m}{s}} = 18\,\rm s[/math]

Eva ist also 2s länger unterwegs als auf dem Hinweg.

3) Über den Atlantik fliegen

Ein Flug über den Atlantik zwischen Frankfurt und Los Angeles z.B. dauert ca. 11h 10min. Dabei legt das Flugzeug ca. 9.300km zurück.
Die Flüge dauern erstaunlicherweise in beiden Richtungen etwa gleichlang, obwohl in der Flughöhe von 10km Westwinde von bis zu 400km/h wehen, im Mittel kann man eine Windgeschwindigkeit von 100km/h annehmen.
Eine Boeing 747-8l hat eine maximale Reisegeschwindigkeit von Mach 0,86. Das sind 86% der Schallgeschwindigkeit und entspricht in 10km Höhe ungefähr einer Geschwindigkeit von 925km/h.

a) Wie lange braucht die Boeing für die Strecke Frankfurt-Los Angeles und zurück mindestens?
b) Angenommen es herrscht Windstille. Wie lange dauert der Flug nun hin und zurück mindestens? Vergleiche mit dem Hin- und Rückflug bei Westwind!
c) Wie schnell muss das Flugzeug mit und gegen den Wind fliegen, damit die angegebene Reisezeit von 11h 10min eingehalten werden kann?