|
|
Zeile 1: |
Zeile 1: |
− | <ggb_applet width="800" height="400" version="4.2" ggbBase64="UEsDBBQACAAIABNsdUMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIABNsdUMAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s5VzbctvGGb52nmKHFx2plag9A3ClZJTMJM2ME2siJ/X0pgOCSxIVCTAAKFGeXPiyfYpc9jZO3iC9t98hT9J/dwGQ4BGQKFmyObBx2uP3f/9hF7s6/mw6GqJLlaRhHJ20SBu3kIqCuBtG/ZPWJOsduq3PPv3kuK/ivuokPurFycjPTlq8TVuzfHDXllhnDrsnLd+T3Z4rg8MOFt4hV5Qcel1fHUrHEYJgJYWvWghN0/BpFH/rj1Q69gN1HgzUyH8WB35myhxk2fjp0dHV1VW7qL0dJ/2jfr/TnqbdFoKWR+lJK794CsVVMl0xk5xiTI5efvPMFn8YRmnmRwHUr3s1CT/95MnxVRh14yt0FXazAWCAGWmhgQr7A+indNwWOtKpxtDZsQqy8FKlkHfu1nQ6G41bJpkf6fdP7BUalv1poW54GXZVctLCbck9V3AAg7icug5UGCehirI8LcnrPCpKO74M1ZUtVl+ZGnkLZXE87Pi6RCQ89NNPiGKK0YE+EXuicJLSvsL2GWb2RO2J25OwabjNzm1SbtNwm4YzEHmYhp2hOmn1/GEKKIZRLwEJlvdpdj1UpklZMoH7Wf/pATAmDV9BWqiuhSzq0PQDfMCx+Wd7PddFMlehLa9+faSojWDK6lVHm/QvfzCrkBUVSmehe3RNfe6t6pt1UMzVJ/CBOcy/ZUDlvVfJGqG6Xor1a5R8Q422gt1WyLHn7L5Kyg6I5x64rnPgCHepUk2yu+/l8VFheY5zY4PSgU6bq2OmRqk2P8wzFggRJMDMSAcMhkDEg5ND4TFFRCAu4Ja4SOqzg5gDLzhiyEU6HWHI2Bnhwn9cvyMSCShLP3SwvodqOBIMEWOdOAKbhIyFA2tHGaQQAgnIpGsnulomEZdww1zEoYHatjlEP4d8cA+VU8QIYjovcRCVSFLkaPtIuDab0tVth0IpkhhJnRUMJBhHaxghh4uY7g2o1ThOwxLcgRqOS6kYHMNoPMkq2AWjbnGZxQupu3Fw8XmJdf5G+Wk2nwzcw8wJWXdR8VFPjod+Rw3BlZ9rIiB06Q+1mTI19OIoQwUJXPusn/jjQRik5yrLIFeK/uVf+s/8TE2/hNRpUbep2vjOYzUJhmE39KMfgCW6CF0gmrlSbXkLV6o5ZaoJ4jjpnl+nwB00/YdKYt0Cry2IKwXzXOkyyoHv1/YVlazNPIdSTDw4HA5Yp4GvWU+obHPsEo8RyiR1KWjh9Zp34NRN5eqy7J0/VWkhgX6idSrHVt98nX4eD2ePxnEYZV/442ySmNAI1CPR3TqN+kNl4DXuA4KM4KITT88trsyW9eJ6rHQW04BO/4t4GCcItJIKAQnyc8eeTRrdsjIVNmmwSYELQYXd8j3xqElhzh17NqlA8rZpeU9J0U2Ci2rC1NgSKHyemYY2OmKZRGH2rLjJwuAi7ymx6b+djDrAuDxbtUiyoyKPjxY4dnyhkkgNLZEikOQknqSW2iU9nxxPUnXmZ4PTqPud6oNWnvnaMGZQtE06a3FXBeEIMla0w9di/R6aap92VT9RRQ+HJha1wJq3FVovPTZFfZnEo6+jyxfAmYWmHh8V/TlOgyQca2qiDljqCzVjXzdMfbDz3fl80PkUehFomwNAZhrEv4fRhRqO/P/9DEHpCP2gEqg7DAYt5E+yQQxkAVASAB19C20d+VEEZYN+A/UIPLpUGnywqkBcrdxDNYKYFGWGvtFkpCBrKUoVdZWJeKE/k7zLsq0VzRUMO8TxhCstBFqwKO78CyzTLKiwpczkAO/XUB75w/HA12FzrsND/xqaOQ+yKe2buJu3gxTQg2QNPmBrxrYABAZSWX5muVqiMRRotHqOQCn03mB7OhzGV6q7JLYcnSWcjKUo+/e8tQRARSHmalwHgLEOJQR4IwTPe71UZWh60jqkYA2uIbezEiF85wjlCpHqxpih4XV+fmXHmXZQpcHSxrKiffbpgibNIx7EIyBvF0Um2PkiTIKh5aL1sj7WwCOflEyIJ1nxIrCF5UUsiQ/Uao7kwe3Fh2sLb0k6WxGeWfgM/PYFjBVT44ZKuemLv4XdropKKMAbq+gSyo3BFqIpzkf917gQT/FkCvAdWsmR/NErMie7kTYlU3RapD8tUp1SyGivWF7oKS/KOhX5lW3Mj5Ftf2q9gI5ewl4YbBb4mVGxqryDJUGfbRZ0VU/Ptgh6tZ0iglnXq8+d/LxB2mS1qhJhtONQ3JWqzmsihRCLYCzBykvhCB2hGc30HB0tuVQ4HucOdjYqqriRov5gWLdaUc+W5Jdulp+lcCmg9D41dU52rhWdeys9vrF8Zg29gSWYC1hy9Qv8JFMphFp5uzO4N8qG1HSsRdXA8728X8/3vlwbuVPXZoYXCwrz0iqM1hu6Sm/evtmsOCYgLcUAqReCONJm1JVUEupwPX7iq6K4daIE99kNLeqQ/HmeOs3QH//5GZEm4iaimbwhjo8TK3DbT3kDzchHTn4SzCTHC0JpLnynekM1NWJZHEg0iBirQv5yEpl8LcgBkEwX5J2G0d503wodW6Gb2HvJXoZR4nc3y75XVlWYTZtpR/JFf/z7v8h/YPEQ22QF10vlXPX189Xeag8foOu9s/39JSmcA6KbZZDmBRfomhx1o4/V+K+AvJhbuIVr0zMtegSxWiassak8XOXE5kznZmcmtoS1C5FkOBoPwyDMSgENtZX/OtJTALbBy5MGF0qN9VzN8+hF4kep/ta1qOSBPzbom8elqJtxaO/tmwOEc402N1YL4XIFoXp19HqRU7370esdkIxY90lWD1N3TzLSpq7nCingH3U8j38UlHs+Rza8zLFpY4JNt7Nrm9Fq4jRuFgk2Z08xUbEiBnqUFqqIBdeF7IuTemm2HA0WzndXQ6vlSTyyUnr503SoP5qjURiZYkb+1IRvfieNh5NMnQeJUtFs2YBtWf4BgjtmIkPzx8slK1190Qunqvz6MoiT8FUcZTuYXFkcdNQdclQkNB0nUJcuJAf4hZpmkN+Mwf704yTO/ortyWStSjSDtK1qxpvMbOwoYjM4NwyUK+POfIjFqSdnB7djbmgNZw6eHdKT82Ow7aDSCqhM4t9/qQ8s3Y39o+vdajGt9AAE4GHGCWeCuHBwt3CpgmEG9pHnP9YQf1bBn757XR99tiPvc4czEDvCnjADenHwAnvqcYEpI+Cg4BDNkOcV5El93PlucMfrcH84nAe6S4c7MkeelrgzKSGEzHHnemlGE+RFBXmvkckRH43J0cbdc13CpHA41ocj8siMYCLnfqwZ/LJK/COKmlgd+ZFYHYC/4Hd+CJbDj13PEx73sJVLQ4vvLMDP62PvfCSWR1PfnY932Az6ikiaIe9WkXcbGR734zE8MPQjQjqkhF+W0SbDmGOBPRhN6MPhzSTgVaMdp5EEvI9HAmB7cG5dzEHyKZxD7ZMdj5W+t2HMo6ea5gTQxO5D1o/E8GuM58daXhnrM8EcSUQplYbgVwewrKHjJfWHsY9cAJr98/GN9LyS/a7HsCh/DR0AoYuhTwP4dzTYffjOl7QpA/xFaeZL/mPH5Q4tf5w2hJ8tKECD0IfsaLT78OHXYT92Heby3Ml6vGS/52HqlL+m7K+Ou74fdRM1mET9VK+WRJ0wReQpQm/foBNkU6C/oD24PUJ7v/+C/oyYxPv7dtn1NmHVH6UtC4Ji/n4EsXo+1QiFOnbq1BE1oa5OLnyV+N0SZDPHBkDbXxXut2/q4Vt/CuJBhTk1ELaLNWsgXB3Ffh73VVRCTN+9LgFeJDQD705Aq6RgwvUglgJmz5EcRgX7+5Auz7BGFaqpSi9eS3b1B9APyEXXkJygi5Jr8lkOEC0EsSSh1R/s+s2/2PV39smO7nadx+xrcP7xja0U4c2/5jmyTSiHSArcuqCC8Q/lY16zT79agal2ZYsU21/NscmoIcMgw27ClM38uo2PvDmJcJsSwmH4A0MgDKjRD+aTcK01K1tNVB1Ltm2dS3OrVubaTLy6K13WWrabrnS5y6UsDmt7mDHmCsYkg6D5cRHx5qunthiyOvZuGxOb2r48z25YuNb+7WC9lR3OEu+eOApWEwvqOlgQ7lKmp5M+LJLeaIX2r5vJtbBC+9fbr9C+7fzAKpdbe4F2zqqHvkC7oZ+8keB/ayT43+5N8A0/C9Tdh/mhSL4qpU4cD5U/W0PvL4ppfn7rXtZdzey7dOx8Gdm4l6zYpl5ZB7cMxFf67wEgvfruHLxb2ptEF2bzwEa9sLsxT5Ng9Tjk5Trd6GxWDbMvc+wnM5fbecBfBOo60hu5wYe8gfMBj2DKLRvr9hvqnfGDoSLNIr9ZtlsGf7eaT1m9s5Tlk+di9Qrbm2xPLAfDy9sUXxliQJDnmj+5IRmWHnWcDUwvbT15jxFfUyKd1RpgrN4dVJCFNh1fzGe8Lc/M6GJbxNeUdLtglTYr1GWCSq7J47jAoXKWhTp66o4QGEcAuTyxaSDxqHnFpJ1C2cqh5rMl1ay75NGKAPL98Yg7bhtLIYAkTK8Yce1m6UMueZsQ/eUc+AVjVbJp88+j5lAN9tycPLvmzpYI7H65Y1bZuUQCf7i25579WKDDIeFgzimlnucwTJb+yNJj506tra3/bBgd5Xlq0+X9kuB2O1S37A26c7Fu2Ud+uDfd0+LYh7Dl2l7tg6OZokP0avHF9t3mmUqzzVRY2mtusjxoJjQX6+129QP8On5897re9v5tQeOq3f13Pym9o61i97q5v6Zw3r0GldDLHWqJZ3s8tkpA9/H16nGI6Gj+T9rp++LvPn/6f1BLBwgiMw8T9g0AAKdaAABQSwECFAAUAAgACAATbHVD1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIABNsdUMiMw8T9g0AAKdaAAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAjQ4AAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" />
| + | Den Punkt P kann man auf dem Einheitskreis bewegen. |
| + | |
| + | Der Winkel zwischen OP und der x-Achse wird auf verschiedene Arten angegeben. |
| + | |
| + | Je nach Art der Winkelangabe verändert sich auch der Graph der Sinusfunktion. |
| + | |
| + | {{#widget:Iframe |
| + | |url=https://tube.geogebra.org/material/iframe/id/332031/width/1000/height/500/border/888888/rc/false/ai/false/sdz/true/smb/false/stb/false/stbh/true/ld/false/sri/true/at/preferhtml5 |
| + | |width=800 |
| + | |height=400 |
| + | |border=0 |
| + | }} |
Version vom 27. November 2014, 14:34 Uhr
Den Punkt P kann man auf dem Einheitskreis bewegen.
Der Winkel zwischen OP und der x-Achse wird auf verschiedene Arten angegeben.
Je nach Art der Winkelangabe verändert sich auch der Graph der Sinusfunktion.