|
|
Zeile 1: |
Zeile 1: |
− | <ggb_applet width="1000" height="750" version="4.2" ggbBase64="UEsDBBQACAAIAKNZikMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACACjWYpDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1d63LbRpb+nXmKXk5VSk5Eqq+4JPJMyZd4XKVMVHYmys56xwWSIImYBBgCtKRk/DZ5gP21D7B5sT3dDYC4iQR4MxlrMhYIoNHoPt+59enug/O/3k7G6L07C73Af9wiHdxCrt8L+p4/fNyaR4O21frrX/50PnSDodudOWgQzCZO9LjFO7S1eA7OOkI97PUftwaDAXYHuNt2B327zbsDo+1Qi7ZN0WMDa+BwzKAkug29r/zg787EDadOz33dG7kT5zLoOZGqcxRF06/Ozm5ubjrJ2zvBbHg2HHY7t2G/haDlfvi4Ff/4CqrLPXTDVHGKMTn78dtLXX3b88PI8XtuC8lezb2//Omz8xvP7wc36MbrRyOgAebQupHrDUfQT8s2W+hMlppCZ6duL/LeuyE8mzlVnY4m05Yq5vjy/mf6Fxqn/Wmhvvfe67uzxy3coTajhk0ZNtVfq4WCmef6UVyWxO88S2o7f++5N7pa+Uu9kbdQFATjriNrRP/+N6KYYnQqD0QfKBwMQ9/C+hpm+kD1geuD0GW4fpzrolyX4boMZ4C3F3rdsQsIO+MQSOj5gxnAl56H0d3YVe2JLyx6T06hT6H3CxRmGOiraS6pjU/lPwP+cXnjLN9JknlrNJsvfam+n3ln8kaCGa3/SrpRR9mim6L8Tiqq32llsCQSq38jIkFSB4YkPETBJA88PjX0qakOBOsDiW9a8o8tT4zNgEuJKDKwQTfU/9W/MmjLXqlR2vIb2TLQim+8n0+yL6RUnBJunRK4emoLWnqnwffdS46lNtpyPzkD1iTk1IT+mom2y7zUxJV6Rh9JfNw++SsocX6WaMHzuEEoHMmysWKI3Ekom8hsJBTnEyRAlAwTFJhAxIaDKUWKIiIQF3BKLGTIo4mYlCKOGLKQLEcYUnpPWPCHm6oyAwmoTF41tawhxpFgiCh1yRHQASmVC1ShDEoIgQQ8JF9PqKyCGYgbcMYsxKGNUtuaUtQZPAjn8HqKGEFMPkxMRA1kyPoIl1rcsGTToUqKDIwMRXlQ2KCstaKG8hZisjcgfdMg9FLqjtzxNCGSoqPnT+dRjna9ST/5GQXTFENVuh/03j1JaR3fcZ0wyhYDU7UwiNp05ezlZ+djp+uOwa14LRkBoffOWCpL9YZB4EcoYQKqrw1nznTk9cLXbhTBUyH6yXnvXDqRe/sNlA6Td6tXKzt+7s57Y6/vOf4PwCWyClkhWph1qSMSs24yrl/TC4JZ//VdCLyDbv/pzgLJeUbHtG0iDMZMYTEMcn4X3zJoB1NmcEGxaRoCKB32HMn0oiO4YRuYmNgGA2fAnbvKWwSUo3qz+z7tmnPrph1Cw5mXYiF/vwyfBON+ensaeH701JlG85ny0QDfmezThT8cu4q2yoKBt9N71w1uX2uiMl3X93dTOMO6Ad3h02AczBCIJBVgq4bxsauPqoxsWVoKqzJYlcAJSl4/vU9sqkqoY1cfVSmAXTct7ilJeomTt3gh0ud5LlM8I12nue9Fl8lJ5PXexT0l+oG/zyddYLeYbPk6yfbqlI0GLy6MfpT8JN1defKf2ZPvR27kSA9PUCZsyzQF/KW2ZWlOLfDo+Tt35rtjzYg+MMM8mIdaNFL2/ux8HrpXTjS68Puv3CEI9ZUjFWsEjdNFFw3suz1vAg/q6zH1HckZ/4DO6qt9dzhzEyKNlV+tsVF3cVYsSpdVVd/MgslL//33wHalpoJzPQNWhEZI7ZNv3vlZ0tvzsDfzppL3URfswDt3wd5AQwesSD8r30CaECrpqSojL5IgPXNCdO2EoTvruqPffxsDNSZB3x2Pv0LPPR89SS62kDOPRgFwJ5BwBiCjv0PPJo7vo5OwN5qPp6O70Ht3473zOn33ETQAVIxkXfTanYJSABYAvQ7yIxXM2J2Aj44iJUX+fOJChSlDXc0nU9cf/f6/I1cNBKDv85h6Riemn+QrFHR/ArVY5McFiHD/HpFDDjRXcReJBcu5g/ZlVamq7VughL5KEtwSREDRTXUFCLSzq+UjitUCmkKFSqtklGvc65r9H//+mz8sEUDJx64pQD82BWCIOXbm8KeaBuLQaLAOBXrBBISnj3zl2l1JY9RauBQOfty6vQDNG/dhHiVXL3RF8eMlUiqrllLhorWCTBmNk6UTodqMqWNsxhbUwktl5rvBIHQjdKus593jVtuoJCWuTUpSRcpYs4byPW1DWY073Tb0iw6/6FiDJIc03bl26qsFpZxjz9vpzA1lSCYh1LevnP4leGu30MYL9CU6aeOOib5AeVY9RfhRK4/E2QqIdMXrwWRYCiV56OpDTYxKMGSIaYLJ3S4xl8r6dVG8BccdTsHJtIRhCNu0DkvWd6HvXhRpwKvVfDzgW8oTutsEb2zqwrGMsaGJJ8c+UM/EuZUNa6XjAKmGFcdw3gGv3KKEGtQ0KDG5FnwKvRA2Zhwzw4ShrRzcDrxbN/XKwZ3wfgF3Le97LZzcCMYt73wQRKVLUlLLH3/z+n3X36pGLgv9KBb4a3SGXlSJchHIUclWsY4gWEjicGJwm5sNGbU+E6nniu9vcxgzMctkWFgAj5kMCv/I0qTadlmiBCOH5jxuv+v9EgNUd7q+Iil3umxZliKeVSOJFmGpEqE4USI0seHxrz0pijUZsKQqXsWqQoBPAHWCwug7/zrhj+pojVdF0KQF3pWa6NXjkE3EYjmHLPxDTkyFuLD4hi5iJWDg1TjTxej5B3cGntoAOf4vrjd0/WZke3ntlcdi61vpJE60sUKtEi+KcYWAWR9HwLYjXi+vg1jA2j2QsBHI16s6oiWfKxoCanYwJRjMMbUYtS2bbyJspaZevyWp2/AlAr6BthKM2ihtuLpQp/WyqpJ3bHZMYlE16WmCR7HVto8WbX9Lajs95VaC2wPts4UwwPOwOaF0u82cxK08GQGJ4f2PoK20VlsnVU3FxGTE5syAJrONVG+ZGy4Sip7cnlw8OkV38Fc2uuk4UVa05iiR61Ei16NEvlRT42WauGrIXeHh7mYEfkGzhAQSvtDEbEpIqGfPdFxYvDbRMRG2NCaSITPdT2QjCWxQGdnIhzRAaVGQLrZmaGMfkY1qWss5JWnthFmT1mT3tE6VgQoh4VO5tKAx/x6oHsA7JBvLMSjQre80Jhs7JLKlck12RzReJNo6zMYPk2o7ZLYnLGNnmDQ0xRjvnbzelJJP9s5/C1UYW5123RCw2DJz5uc6XrtDeb0w2yHZ1SFKTjUJFlMe3bexo3XfpEcY15hQsvu2QkduN+axlGVDaJ6aZL0Yj4Mbt1+a3V3Q2raLRse2Fu+rGn/x5eMv92dfPxLqSXhvMh17PS9KqTqWA6+Xvpz11o0sz5O/c92pXOHwnf/9zPFDuVS1OAPdEFymwX1SBnfQDNrBsQCbqioRA9tezFseBa4VmjHrgdN7NCNtrhk/okNuKYxoXQMktuwh1pIdGssOLcnOsJnsDI9Wdo5LI5Yl52lRcGRwhVVMH/cdGcloKkFP1xSgLLKrpvjrighZyIjYkYf2bEHNpyqi8vQRaiPaEU3p9uwQ6damO3Ntn1cQ7st1CPf8EAnH9qiUn2md/Lykkn9qppJ/WpOQFGvbJ8ge1XLJ/LXN5S6NXC174Jr5mZOVCa1GtGQ0VibOIQ2ViZmu4tmVGn6eJ92X65Pu+d5JlwnJUqbVLhF1SUu3TNpaCseJNY5TUjnjZipnfEwqJ/EE00EUTabGj1XhXF/kR1FSYq4vSGOZud7/PEa90Nxu5oOKy2XHd8PAL46U4giSHDDRmNIO01NnRaH5wZNM+I7oRxw57ymfceJHbtQPLn+siD1N46YkRE8rvpdJV0ygbzQ+yztVptiqYN6/WqKoY5yqANx+PcQ1lAzHtYabK/Dbv45ZDsW6auJjINGu0h5Zh5OauJNbu/GHwenmqIBK1xKlMnPPsu0/BDLHpMxWSJBFcMdgmNvU4iA+xlHBVF51mYaC6NeauHIcolc0NPKmXm0jFLR8Gd89ww9DL1PgtUcfuMOYXNNtC7knkjAeT9XZJjEMW1DKCSBrFdyuzD7EGC5wXJzZ7n2yRfRaOVhydlU6WBXTfLHnFE8VOTTxybr0beyVdZl2yhy2lk/G7vfJ8JZ9MkKteAOVXsGijjFzkC1LfxNfYN2J0WX9OaCZgBUw7t10KNY9KoK3STHGtzzEd3AUr1hmccj0Th2plMNXTBMfGsGdIyN4kb/poWmUvFV96s16Y7dgVLWDI60kjIZKdvTn5caxF/iZBdE/bxgN1J4PwTQDHi+Bt3Th0UrwKoERK5xTucXjPdQbzEKEbnECPE6QT67cAhXbWgpJsuKJZIz0RGY7uEUXSfmLpNQFVat3bPDfLlhc6wVPUlhciLjaSldZ5nPxBgDDUuxfBZETFbF/FU892fiL//sf7SApdihywatndJWTlHeA1w4nbr5U145V4NJtQFkbVfJ2dQVF15hJ53q/XvBSzIi1ErSVnm0etLUXFW4OWpviGvv7M6jZHcPgwiCYA2rcigc+7Y8/clmKGTVXYsabYbb2ktptYBYTva6kWR1MLcYwB4GyBI4XkpbkjO8bMm0WXyv9fq9xVBDSVBXmUJvVMJJTZ7bAbbaem5Ns9EtSOVHMlg4Ed2ApV4Vx9mMpDfWrqaHc8+rVmmzFEr7iJb4Km/JV+MBXD3wV8xVN+KocHOutWgNf5qzeusGe+337B846Us7iCWeVGKvfnLH6D4z1x2esexajp0ssinzkL+eiYtjI3/J8y8GsDlixGH3n8bnuPIoyUx+veyNnHA3Gv//WG7mrxHbTNB/VaeCEoaeoaHUii7galY4i38nPzp35rTf2nNld8cZw2NWpL+P8t9eP8ed/JvjrUXzUjcz8vnycjE2yOUHS7JZo7Lqzck6QGrG4p/EwsSQQ0yZhuOlWwnD10dmSPl2182Iv+pRS0pF5CvMaVWQ0qmgWhatKP+LhXPI/ik9RmzTeTqvq2VzxrVpLsFTQsqP7xezD7vbTQp+TXe+y+5J8SVKUNXIKqNoOh4Lm9imY1zk/VHl2mh2l2lHkKGqe+XLNowUypdZ8swFoHc2zlJpN5m6KGRqWm+IVUwTlKFUPvFw39Bw/bpnMwawysy7Ytw6/BzldwddVFcEhqQq6H1URLFRFIHMmgaoI1lcVwSGpCmJ2qG1atsWESQwTk4+hN4JUbwRlvfG+kd54v+0x4C41B+2YxZxfH1OPBDWE4Xv3NkpSUXz+8zyIvn4Do4B/zgfjeRjOnMjVF1tlMYjgyVa+mgNX8V546Xzv/lj08tXnLEJ35g3Sj5+AWHwb+376Mxe4lVCdlKitTbTdsYhlY4ypieE/M04L1CEWJyZlJpFrJW2WFcLVyJA8MoOZ0/v1DTipKrE/uv6QOYk+oMcI6YLSIKiu/hcYk/+WixXj629OkYRXVzQZf/g1/BDjW6HnSgCvG485SoArv81QgbpJQOJtE1QuEVTE2pZ0LCxA/ZrCMCnHuCHstCnsFbgH28N9zcVl+9TBu0P+HnkndkdYNgV5N0xmYJOlyAtgBMukBuYELLHZDHleUsUX3TVUccXk7x8ZsQpwDFvYNmZEgBhSzhNtDIqZyRTi1KaGnNtugo0oYfNiNvf7cdQLxLAohC8KItib/Is2EDuxSSKNqtTshwxhLXXL7Q6XaFJhY2HiBFYYNTDbAuMrv99jGcJqCKxRAvZv8rMwFYiOSog2wNPYDM/4I02CHSWi90iqxTqY2vA/yk0sME02d1pwyaAYbKcQHNvN8DRLeOpPD8FDwypUrwuoTsYNUDU3T3ez0djvI2KKqzEVZgfk0AQNaxpcYAsbqS8MDjAxiU2waYCRbIaqlUe16w49/1dnNnPuPvw6/qBi8ChrMIPR7M1/wOD+zZvFvWfzWW80cSUzVPBB3ymJN1LPvnH9fvyqBpxh7ToR0qHyxT3aG6wyFyDj4B1xQ2CbLNQ3N5hpW5hZFpcf66vPGBfsspDrtHFaI1nFevGbRkvl6gZw0lSnu0vQ8yQlmko+eSkTkoDfWpEo6k7dbp6Ecu8UXcwDJvHDulkorSTPxg7pTTP0BuI8Wi+ltKzmo5G1rRc/s6Xz3VVk3U3gsXoboCK0WjmgF6Io7SC39EmOLMYh4+168c7BLh3HuRmSbYAOG+t9gF22IvfJPRsB6ae+EVDSdOvd2WX8NlW9NM65c2i7dlblw9jTNsBt0VsnoctuAyQHt1Fq1b60I2Xxdsrj/Lh2AnaPjeJFHifGoRG8zpI85TPqzNllU9pdbh9LEB5bhthUVtorhGX/y/JqYbdwi4rIuc2Qc48WuUNbTllrGSy5X+ScZsBVpD48TOBsq6AuhXVkmerL47+rZBpXfYVXxilO2tnPb6vvSp2i5KL6JvmjdTI0Xx3SShRTxCPA9rZS5lZQNpkvuyJx+CdLwqbUW3fL5E6pt0PisRzxshy5GR3X3S68Lh2zX76K1zvVzXNk7IHMdAmZGy83u9pH/rbascqti3idKM9V/A2Xq3iD5FUcsLkqrzVTxI4DPG/jfW8DlfGJyS8Kxtk3vWbhHV3pvfZol4k38dKoDrlHJpIt8PYyWLcX9amKQmx51822R8Pp8sg22ygr595Hw4OtpEDdD7GNgmfHbHZUtB4dIWO3j5azvaOhdbvI2G0uDo6zK5JaXhazWl4maS0vG+e13MvMVN0pPcPqGCYWRFCLMxunq7AtbGFTUBsb3CAs7698tPwvl5WJlsoD/lfP6OUqP6WQamnvoGSdDk10c6nPkR3vkA4rwKPyjVrU5hY3iTCwjYUQh4VaMdVSFWysIWz7mTy/D7Y4bFZX1EzaYVmEjCRFVk7WqG0dFm7FdEtVuPGGuPHD0oFyCSxRy+psJphlJmmwCgK19zRYK1JJXKa5JC6TZBJlcPpvyQpwKtNJVAC0yf6FPWWTWPWxkb3sfua2YZS3P5vq2zQHlVCiLnul3EXL7DVrzFyzDVnrI+ZXemCvXbAXTfmrYu6mt4b66j2orwf+WvAXS/mLl/krbMxd4YP++jT4a2m+paovWI1WpBosBcnWzDSowzZqd0s33oi2syQzDb4E1ORDJuQwV+7cn0zrxetm2EL5TbCttSNtW8g2zKe16pN+O8fum7mvKm3BA0Cy23IuFpWgIs7HrpW/pGgR05dvf732PizHdZC+K8Ytfqg2uGBA+p7KbyWLfxeXfuY5w5kzmdR3Qba/kKS5iVgbkpMeIPIKfYFuH9WHJlgHmqACmnsjC42xabTn92OiU5XJ5cpLgtijU6RpdTJqvLNC1XMQ3F8zvHOP2arKP7KjFDpXQYHw3pqED3ZI+EasvRnpd5ivSO4ltHObHwmunwrA3h1960+1bWbVd5gqQH7nDAYtJjY554Yhki3lxcuY5kSpRuYWnEOMNkCMVGTkeoAshYwWsalEjOWnHGoAls+1w5oA1iAxzicIGKspYw3xyifJ4U3warBN6hPEi+8Gr3yWMdEErwaZxT5BvMRu8MqnIhqhNyqDwklv8qgBcg0SEX2CyBm4w2WGMEvYVBDb4sliWsMwTJtYmNrUNGwuGkInCt5iE1lrkHXoE0QMg/NPQKIoNzCnmDK9/tnucNsGOTMN0zSI0SCBhaK5UfAVm+DVIKvQJ4kXp4YpTJNY1IQRYDJaszsGZSpvH7ExxaKphOVTDL18ex2rxzdjdxCd5BLtwXVvOIqaaM0GOYU+TUyFLbCBMZHgGtSOl5p1uImJQUwTRuWY3e//579kEARj11kE3FLSyTdD6+duqW873EZXvSzLsHX2DUqWYdIbub133eAWqY8cZKme+xrBN97tdO6/i9pZJmmY4vckzpQsI54nlj4phjtvk40DNTP9yvJHz/aLOFGa9b7eBMSKJcFNsv9mpz8KUak6bvrb/EDYaOSoN/lmz6FiuFuHb31c8gNesxkuD0PeZbiY6+NilZINJgq2H1OsAU47Txl3OAg43TAYzyP3dW/muv5l0HMUyyk04m++UrqpaYLfVoVpumtomu6OwDSVp76tI7M8xttiCLbROOjB9KzwmnGcwW0NYIqx1mbAPNieOsDwdYApBlWbAfMQV60DjFgHGF5wopsB8xA2rQOMsQ4wouBFNwPmITq6dDa9QwimlGHKDSqIMMTzJPuAuQyrHNn9+QRasfhoYVSMxPCEJEsWRDX7xiQpkbh6nVPS67HXh4ITz1fVTJxbvfiz2qVNyHnj9aORWhmmlhvDL8pjRjYNtYU4jtvEPRkFM+8XACUP0zopkBzfm2jvOozcqbyMwqkrX7VYsgrXptB/zx9m35b5AGbg/2PadyIoev2WoMfoGn2JXl57Z0R+QKuHvkAjtRwOzj//M2Ff6+9k6pLw9wy9yFyewNWTEVQABR6d0cWd68qKJxU1q4K5WhWacFkfv0RIf9RLRtPzZS6TQpfwAr2wkuK6CsQuDfdUOpAGSqTBgpw/mHqQSY2IiTkxDGITm9s63b/RoZiaxOAw7iPFndlZSGC45ofwctV+eT50g6HbnTl/+X9QSwcIbWpKhtYYAAAY1QAAUEsBAhQAFAAIAAgAo1mKQ0XM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACACjWYpDbWpKhtYYAAAY1QAADAAAAAAAAAAAAAAAAABeAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAG4ZAAAAAA==" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
| + | Eine Wasserpumpe pumpt Wasser in einen Behälter, der einen Abfluß hat. |
| + | |
| + | Mit den Schiebereglern unter dem Behälter kann man die Bedingungen verändern. |
| + | Der linke steuert die Zuflussrate, der rechte durch die Größe des Abflußrohres, die Abflussrate. |
| + | In der Mitte kann man die Behältergröße einstellen. |
| + | |
| + | Das Fixpunktdiagramm stellt die Zufluss- und Abflussrate in Abhängigkeit von der Höhe des Wasserspiegels dar. |
| + | |
| + | |
| + | {{#widget:Iframe |
| + | |url=https://tube.geogebra.org/material/iframe/id/382101/width/1000/height/730/border/888888/rc/false/ai/false/sdz/true/smb/false/stb/false/stbh/true/ld/false/sri/true/at/preferhtml5 |
| + | |width=750 |
| + | |height=548 |
| + | |border=0 |
| + | }} |
Version vom 11. Dezember 2014, 13:00 Uhr
Eine Wasserpumpe pumpt Wasser in einen Behälter, der einen Abfluß hat.
Mit den Schiebereglern unter dem Behälter kann man die Bedingungen verändern.
Der linke steuert die Zuflussrate, der rechte durch die Größe des Abflußrohres, die Abflussrate.
In der Mitte kann man die Behältergröße einstellen.
Das Fixpunktdiagramm stellt die Zufluss- und Abflussrate in Abhängigkeit von der Höhe des Wasserspiegels dar.