Die Maxwellschen Gleichungen

Aus Schulphysikwiki
Wechseln zu: Navigation, Suche

James Clerk Maxwell

Der 1831 in Edinburgh geborene James Maxwell war, bis zu seinem Tod 1879, einer der bedeutensten Physiker des 20.ten Jahrhunderts. Zu seinen wichtigsten Entdeckungen zählen die Geschwindigkeitsverteilung von Gasmolekülen (Maxwellverteilung), die Vereinigung elektrischer und magnetischer Phenomene zum Elektromagnetismus (Maxwellsche Gleichungen), sowie Theorien über die (elektromagnetische)-Wellenartigkeit des Lichts.


Die 1. Maxwellsche Gleichung (Erzeugung von magnetischen Wirbelfeldern)

Etwas analoges zu einem elektrischen Wirbelfeld findet man im magnetischen Feld bei den magnetischen Wirbelfeldern. Wie bereits bekannt entstehen diese um elektrische Ströme. (siehe Die magnetische Feldstärke.)

Allgemeiner gefasst:

[math]Hl = I[/math] entspricht [math]\int H \cdot ds = I[/math]

Gedankenversuch: Der Verschiebungsstrom

Aufbau
Ein Kondensator wird mit einer Batterie geladen.
Ablauf

Nach dem Ampereschen Gesetz müsste sich überall entlang des Kabels ein magnetisches Wirbelfeld bilden, solange der Kondensator aufgeladen wir und dazu ein Strom fließt. Die Vorstellung, das dieses magnetische Wirbelfeld allerdings genau beim Kondensator aufhört und direkt danach wieder beginnt, wirkt allderings befremdlich.

Der Verschiebungsstrom

Aus diesem Grund erweiterte Maxwell das Amperesche Gesetz um den so genannten Verschiebungsstrom: Wir betrachten zunächst die Ladung des Kondensators, indem wir uns eine Fläche um eine der Platten vorstellen: Nach 1. Maxwellschen Gleichung erhalten wir:

[math]Q = \epsilon_0 \int E \cdot dA[/math]

Die leiten wir nach der Zeit ab:

[math]{dQ \over dt} = \epsilon_0 {d \over dt}\int E \cdot dA[/math]

Da die zeitliche Ableitung der Ladung auch als Strom gesehen werden kann:

[math]I_v = \epsilon_0 {d \over dt}\int E \cdot dA[/math]

Diesen Verschiebungsstrom setzen wir nun wieder in das Amperesche Gesetz ein:

vergrößern vergrößern

[math]\int H \cdot ds = I + \epsilon_0 {d \over dt}\int E \cdot dA[/math]
Um ein elektrischen Strom oder um ein sich änderndes elektrisches Feld
entsteht also auch ein magnetisches Wirbelfeld.


Die 2. Maxwellsche Gleichung (Erzeugung von elektrischen Wirbelfeldern / Induktion)

Versuch: Elektrisches Wirbelfeld

Aufbau

Eine mit Neon gefüllte Glaskugel ist von einer Ringspule umgeben. Man legt eine hochfrequente (ca.10000Hz) Welchselspannung mit etwa 400 V an die Spule und erzeugt so ein sich schnell änderndes torusförmiges magnetisches Wechselfeld.

Beobachtung

Video des Versuchs.

Überlegung für Potentialfelder

Ein geschlossener rosa Kreis entsteht innerhalb der Glaskugel. Dies lässt auf ein elektrisches Feld schließen. Da dies jedoch rund ist, kann es sich nicht um ein Potenzialfeld handeln, sonder nur um ein elektrisches Wirbelfeld.


[math]U_{1,2} = \phi_1 - \phi_2 = \int_{P_1}^{P_2} E \cdot ds[/math]

Bei gleichem Anfangs- und Endpunkt:

[math]\int_{P_1}^{P_1} E \cdot ds = 0\quad \text{also}\quad \oint_{} E \cdot ds = 0[/math]

Im Wirbelfeld

Für ein Wirbelfeld wird dieses geschlossene Integral also nicht null ergeben, sondern eine andere induzierte Spannung: LaTex: \oint_{} E_{ind} \cdot ds = U_{ind}

Mit [math]U_{ind} = -{d \Phi \over dt}[/math]:

[math]\oint_{} E_{ind} \cdot ds = -{d \Phi \over dt}[/math]

Da [math]\Phi = A \cdot B \quad \text{genauer}\quad \Phi = \int B \cdot dA[/math]:


[math]\oint_{} E_{ind} \cdot ds = -{d \over dt}\int B \cdot dA[/math]

Um ein sich änderndes Magnetfeld entsteht also ein elektrisches Wirbelfeld.

Die 3. Maxwellsche Gleichung (Erzeugung von elektrischen Feldern durch Ladung und Polarisation)

vergrößern

Siehe: Felderzeugende Ladung und Feldstärke Weitere Abstraktion:

[math]{Q \over A}=\epsilon_0 E[/math]
[math]Q = \epsilon_0 E \cdot A = \epsilon_0 \int E \cdot dA[/math] (bei genauerer Betrachtung)
[math]Q = \epsilon_0 \int E \cdot dA[/math]
Die Summe der elektrischen Feldstärke von allen Punkten einer geschlossenen 
Fläche entspricht der elektrischen Ladung innerhalb dieser Fläche.


Die 4. Maxwellsche Gleichung (Erzeugung von magnetischen Feldern durch Magnetisierung)

vergrößern

Versucht man eine Analogie zur 3. Maxwellschen Gleichung im magnetischen Feld zu finden, empfiehlt es sich anstatt der magn. Feldstärke H, die der elektr. Feldstärke entspräche, den magnetischen Durschfluss B zu nehmen, da ansonsten das Ergebnis davon abhinge, ob die betrachtete Fläche innerhalb oder außerhalb des Magneten endet.

Da aber der magnetische Durchfluss stets geschlossene Kreise bildet, fließt aus jeder beliebig gewählten Fläche stetzt genau gleich viel magn. Fluss, wie hineinfließt. Daraus ergiebt sich:

[math]\int B \cdot dA = 0[/math]

Die Summe des magnetischen Durchfluss von allen Punkten einer geschlossenen Fläche ist also null.

Links