Heuristische Lösungen der eindimensionalen zeitunabhängigen Schrödingergleichung

Aus Schulphysikwiki
Wechseln zu: Navigation, Suche

Ziel

Wir suchen Funktionen [math]\psi(x)[/math], mit den folgenden Eigenschaften:

  • [math]\Psi''(x)=-c (E-E_{pot}(x))\Psi(x)[/math], mit [math]c=\frac{8\pi^2m}{h^2}[/math]
  • Die Funktion muss sinnvoll als Zustandsfunktion eines Quants interpretierbar sein.


Eigenschaften der Zustandsfunktion

vergrößern

Anhand des Beispiels des endlich hohen Potentialtopfes kann man sich die wesentlichen Eigenschaften der Zustandsfunktion klar machen.

  • gebundener Zustand: [math]E \lt E_a[/math]
    • im Kasten: [math] E \gt E_{pot}[/math]
    • Ausserhalb des Kastens: [math]E \lt E_{pot}[/math]
  • freier Zustand: [math]E \gt E_a[/math]


Übersicht der Eigenschaften

An Orten [math]x[/math] mit "kleinem" Potential: Wellenförmiger Verlauf "Stehende Welle"

  • Falls [math]\psi(x)\gt0[/math], dann ist [math]\psi''(x)\gt0[/math], die Kurve [math] \psi(x)[/math] ist rechtsgekrümmt (Rechtskurve).
  • Falls [math]\psi(x)\lt0[/math], dann ist [math]\psi''(x)\gt0[/math], die Kurve [math]\psi(x)[/math] ist linksgekrümmt (Linkskurve).
  • Falls [math]\psi(x)=0[/math], dann ist [math]\psi''(x)=0[/math], die Kurve [math]\psi(x)[/math] hat einen Wendepunkt

An Orten [math]x[/math] mit "großem" Potential: [math] E \lt E_{pot}(x)[/math]: Exponentieller Verlauf "Tunneleffekt"

  • Falls [math]\psi(x)\lt0[/math], dann ist [math]\psi''(x)\gt0[/math], die Kurve [math]\psi(x)[/math] ist linksgekrümmt (Linkskurve).
  • Falls [math]\psi(x)\gt0[/math], dann ist [math]\psi''(x)\gt0[/math], die Kurve [math]\psi(x)[/math] ist rechtsgekrümmt (Rechtskurve).

An Orten mit [math]E = E_{pot}(x)[/math]

  • Hier ist [math]\psi''(x)=0[/math], die Kurve [math]\psi(x)[/math] hat einen Wendepunkt.

Randbedingung

Die Zustandsfunktion muss für große und kleine Werte von x gegen Null streben, sonst ist sie nicht normierbar. Die Fläche unter [math]\psi^2[/math] muss Eins betragen.

Links