Graphische Darstellung von Feldern
(Kursstufe > Grundlagen elektrischer, magnetischer und schwerer Felder)
Inhaltsverzeichnis
Verschiedene Darstellungsmöglichkeiten
Untersucht man ein Feld mit einem Probekörper, so kann man an jeder Stelle die Stärke und Richtung der Kraft auf den Probekörper messen.
Dadurch kann man für jede Stelle des Feldes eine Stärke und eine Richtung angeben, welche die Dichte und Struktur des Feldes beschreibt.
Diese Eigenschaften kann man unterschiedlich darstellen. Das Feld selbst kann man nicht zeichnen, aber die Zeichnungen geben eine gewisse Vorstellung davon.
Das Helligkeitsbild gibt die (Energie-)Dichte oder Stärke des Felds an.[1]
Weitere Beispiele
Bei diesen Darstellungen wurde die felderzeugende Eigenschaft durch eine rote oder blaue Farbe gekennzeichnet.
Welche reale Situation könnte jeweils hinter den Darstellungen stecken?
Eine Hilfe ist es, sich auf einer Feldlinie einen Probekörper vorzustellen, auf den dann in Richtung der Linie eine Kraft wirkt.
Quellen und Senken
Bei der Quelle eines Feldes beginnen Feldlinien bei einer Senke enden sie.[2]
Elektrische und magnetische Felder haben Quellen und Senken.
Gravitationsfelder haben nur Senken.
Positive Ladungen sind die Quellen des elektrischen Feldes und negative Ladungen die Senken. Nordpol-Ladungen sind die Quellen des magnetischen Feldes und Südpol-Ladungen die Senken. Schwere Massen sind die Senken des Schwerefeldes. |
Druck- und Zugspannung
El/Mag-Feld: Beispiel einer Brücke mit tragendem Bogen und Hängeseilen dran??
Das elektrische/magnetische Feld ist parallel zu den Feldlinien unter Zugspannung, senkrecht dazu unter Druckspannung. "Die Feldlinien sind sich gegenseitig abstoßende Gummibänder." Das Schwerefeld ist parallel zu den Feldflächen unter Zugspannung, senkrecht dazu unter Druckspannung. "Die Feldflächen sind sich gegenseitig abstoßende Gummihäute." |
Graphische Darstellung der Felder mit Probekörper
Je nach Modellvorstellung zeichnet man das Feld, in dem sich der Probekörper befindet, anders.
Im einfacheren Probekörpermodell vernachlässigt man die Beeinflussung des Feldes durch die Probeladung. Man zeichnet den Probekörper auf die Feldlinie des ursprünglichen Feldes. Dadurch sieht man gut, wie die Feldlinien die Kraftwirkung auf den Probekörper angeben.
Im Modell des aktiven Feldes betrachtet man das veränderte Feld. Dadurch kann man sehen, wie durch die Zug- und Druckspannungen des Feldes auf den Probekörper eine Kraft ausgeübt wird.
Wichtige Felder
Das Zentralfeld
- Feld eines kugelförmigen, im Extremfall punktförmigen Gegenstandes mit elektrischer Ladung oder Masse.
- Ein magnetisches Zentralfeld kann man näherungsweise durch einen sehr langen Stabmagneten realisieren. An beiden Polen ist dann ungefähr ein Zentralfeld.
- Das elektrische/magnetische Feld zieht längs der Feldlinien an dem geladenen Gegenstand nach Außen.
- Das Gravitationsfeld drückt den Gegenstand längs der Feldlinien zusammen.
Das homogene Feld
Ein homogenes Feld ist, wie der Name schon sagt, überall gleich. Das heißt, seine Dichte/Stärke und seine Struktur (Richtungen) sind überall gleich.
|
Probekörper im homogenen Feld
Der Probekörper wird vom Feld in eine Richtung parallel zu den Feldlinien[3] gezogen. Bei positiven, Nordpolladungen oder schweren Ladungen in positive Richtung, bei negativen Ladungen oder Südpolladungen in die entgegengesetzte Richtung. Die nebenstehenden Bilder stellen Beispiele dar:
|
Das Feld eines Dipols
Ein Dipol besteht aus zwei unterschiedlichen Ladungen.
- Zwei unterschiedlich elektrisch geladene Kugeln haben ein Dipolfeld.
- Ein Stabmagnet hat ein Dipolfeld.
- Es gibt keine gravitativen Dipolfelder, weil es keine negative schwere Ladung (Masse) gibt.
- Das elektrische / magnetische Feld steht längs der Feldlinien unter Zugspannung und zieht die Ladungen aufeinander zu.
Gleichnamige Ladungen
- Das könnte ein Doppelstern wie unser nächster Nachbarstern AlphaCentauri sein, bei Erde und Mond ist das Feld unsymmetrischer.
- Oder zwei Südpole zweier Magnete.
- Oder zwei negativ geladene Kugeln.
- Das Gravitationsfeld steht parallel zu den Flächen unter Zugspannung und zieht die Körper zusammen.
- Das elektrische und das magnetische Feld steht parallel zu den Feldflächen unter Druckspannung und drückt die Gegenstände auseinander.
Aufgaben
Häufige Fehler
Bei Festmagneten findet man relativ häufig Darstellungen des Magnetfeldes, die zu falschen Vorstellungen führen können.[4]
- Die Feldlinien verlaufen von Pol zu Pol und treten an einem Festmagneten auch seitlich aus. Damit unterscheidet sich das Feld eines Stabmagneten auch von dem einer Spule. Bei Darstellungen sieht man manchmal die Feldlinien nur an den Stirnflächen austreten.
- Die Feldlinien treten auch schräg aus der Magnetoberfläche aus, nicht nur senkrecht. Ausschließlich senkrecht austretende Feldlinien findet man bei elektrisch geladenen Leitern, bei denen die elektrischen Ladungen frei verschiebbar sind.
Fußnoten
- ↑ Man kann die Energiedichte des Feldes oder die Feldstärke im Helligkeitsbild darstellen. Da die Energiedichte direkt mit der Feldstärke zusammenhängt, sind die Darstellungen sehr ähnlich. Weil die Energiedichte quadratisch von der Feldstärke abhängt, nimmt die Energiedichte bei größeren Abständen von den Ladungen schneller ab.
- ↑ Die Begriffe "Quelle" und "Senke" sind aus der anschaulichen Darstellung mit Hilfe von Feldlinien entstanden. Aus einer Quelle fließt allerdings nichts heraus und in die Senke fließt nichts hinein, denn das Feld ist zeitlich unverändert.
- ↑ So wurden ja die Feldlinien definiert.
- ↑ Siehe auch Das Feld von Dauermagneten (Altlasten der Physik (39), Friedrich Herrmann)
Links
- Das Zeichenprogramm "FieldLab", mit dem man viele verschiedene Darstellungen von Feldern erstellen kann.