Die eulersche Zahl e und die natürliche Exponentialfunktion

Aus Schulphysikwiki
Wechseln zu: Navigation, Suche

Exponentialfunktionen

Exponentialfunktionen beschreiben exponentielles Wachstum oder exponentiellen Zerfall. Dabei wird ein Anfangswert [math]f(0)[/math] immer wieder mit einer festen Basis [math]b[/math], die man auch Wachstumsfaktor nennt, multipliziert:

"Das menschliche Darmbakterium Escherichia coli hat unter Idealbedingungen in Laborkulturen eine Generationszeit von etwa 20 Minuten."[1]

Zeitschritte (je 20min) 0 1 2 3 4 ... [math]x[/math]
Anzahl 1 2 4 8 16 ... [math]2^x[/math]

Das radioaktive Iod-Isotop 131 hat eine Halbwertszeit von 8 Tagen:[2]

Zeitschritte (je 8Tage) 0 1 2 3 4 ... [math]x[/math]
Masse (in g) 100 50 25 12,5 6,25 ... [math]100\cdot 0{,}5^x[/math]

Die Graphen der Exponentialfunktionen

Fußnoten

  1. Wikipedia: Bakterielles_Wachstum (26.11.2017)
  2. Wikipedia: Iodisotope