Messunsicherheit und Fehlerrechnung

Aus Schulphysikwiki
Version vom 5. Oktober 2006, 11:09 Uhr von Patrick.Nordmann (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

Messfehler

  • Jede Messung ist nur eine Annäherung an den wahren Wert einer Größe.
  • Dabei entstandene Messfahler teilt man in systematische und zufällige Fehler ein. Bei zufälligen Fehlern geht man davon aus, dass die Messwerte um den korrekten Wert schwanken. Bei einem systematischen, z.B. durch einen falschen Versuchsaufbau verschieben sich die gemessenen Werte um einen Betrag. Sie sind schwer zu korrigiren. Zufällige Fehler werden durch Schwankungen der Messgröße, der Messgeräte, der Umwelt, durch den Beobachter etc. verursacht. Sie sind unvermeidbar, können aber abgeschätzt und durch Wiederholung verringert werden. Dazu verwendet man die Statistik. Graphische Veranschaulich der Fehlertypen.

Angabe von Messfehlern

  • Als absolute Angabe mit Einheiten: [math]l=2m (\pm 0,01m)[/math]
  • Als relative Angabe ohne Einheiten: [math]l=2m (\pm 0,05)(\pm 0,5%)[/math]
  • Mit Hilfe von geltenden Ziffern, wobei nur die letzte Ziffer fehlerbehaftet ist: [math]l=2,000m[/math]

Statistische Beurteilung von zufälligen Fehlern

  • Dazu müssen eine möglichst große Anzahl von Messungen des gleichen Wertes durchgeführt werden.
  • Häufig kann man annehmen, dass die Messwerte normalverteilt sind, die Haäufigkeiten also der Gaußschen Glockenkurve entsprechen.

Fehlerrechnung und Fehlerfortpflanzung · Treten nur zufällige Fehler auf, wird mehrfach gemessen und der arithmetische Mittelwert berechnet. · Trägt man auf, wie häufig die Einzelmessungen derselben physikalischen Größe denselben Wert liefern, liegen die Messpunkte auf einer glockenförmigen Kurve, der Gaußschen Glockenkurve oder Normalverteilung. · Die Standardabweichung s ist ein Maß für die zufällige Abweichung der einzelnen Messwerte von ihrem Mittelwert. · Fehlerfortpflanzung tritt auf, wenn eine physikalische Größe aus verschiedenen Messwerten zusammengesetzt ist. Der Gesamtfehler hängt davon ab, ob die Messwerte addiert, multipliziert oder potenziert werden. · Sind die Schwankungen des Messobjektes groß gegenüber der Genauigkeit des Messgerätes, müssen Messungen an größeren Stichproben und weitere Verfahren der Statistik zur Auswertung herangezogen werden.


Gaußsche Glockenkurve

Arithmetischer Mittelwert und Standardabweichung




Messfehler und Fehlerfortpflanzung 1. Messfehler Regel: Messwert = Wahrer Wert ± Messfehler Messfehler = Messwert – Wahrer Wert Messwert: x Messwert (Istwert) Gesamtfehler: Dx Messfehler (Messunsicherheit, Größenfehler)

	 	 	Wahrer Wert (Sollwert)
2. Fehlerfortpflanzung

Eine Größe y wird aus fehlerbehafteten Messgrößen xi errechnet. Berechnete Größe: Resultierender absoluter Maximalfehler:

2.1 Fehlerfortpflanzung bei Summen- und Differenzenbildung

Regel: Addition der absoluten Fehler Berechnete Größe: Resultierender absoluter Fehler:

2.2 Fehlerfortpflanzung bei Produkt- und Quotientenbildung

Regel: Addition der relativen Fehler Berechnete Größe: Resultierender relativer Fehler: 2.3 Fehlerfortpflanzung bei Potenzen Regel: Multiplikation des relativen Fehlers mit dem Exponenten. Berechnete Größe: Resultierender relativer Fehler:


ÜBUNG: Fehlerfortpflanzung 1. Summe und Differenz von Messfehlern

Schreibe die Formel für die Fehlerfortpflanzung für die Addition /Subtraktion von Größen mit Messfehlern.

Ein Objektträger habe die Dicke von 1mm ± 0,02 mm. Wir legen 22 Objektträger übereinander. Berechne die Höhe des Stapels von Objektträgern und gibt die Messunsicherheit an.

2. Produkt und Quotient von Messfehlern

Schreibe die Formel für die Fehlerfortpflanzung für Produkt und Quotient von Messfehlern.

Berechne die mittlere Geschwindigkeit und Beschleunigung für die Bewegung eines Körpers. v = s/t ........... a = v/t Zurückgelegte Strecke: s = 2340 m ± 3m Benötigte Zeit: t = 0,41 s ± 5 ms

3. Potenzen

Schreibe die Formel für die Fehlerfortpflanzung einer Potenzfunktion.

Berechne die Schwingungsdauer eines mathematischen Pendels: T = 2 p [L/g]^1/2

L = 1m ± 0,001 m g = (9,81 ± 0,005) m/s²


ÜBUNG: Mittelwert und Standardabweichung 1. Wiederholung der Formeln für arithmetische Mittelwert und Streuung. Schreibe die Formeln für den arithmetischen Mittelwert und die Standardabweichung

2. Berechne aus den Messwerten der Körpergröße von 8 Personen den arithmetischen Mittelwert und die Standardabweichung.

Messwerte: x1 = ........ x5 = ........ x2 = ........ x6 = ........ x3 = ........ x7 = ........ x4 = ........ x8 = ........

3. Wiederhole die Formel für den Vertrauensbereich des Mittelwertes


Eichung und Kalibrierung · Wird der Messfehler eines Messgerätes durch das Eichamt bestimmt, nennt man diesen Vorgang Eichen. Der so ermittelte Messfehler wird auch als Genauigkeit des Gerätes bezeichnet. · Wird der Messfehlers eines Gerätes bei einer Messung bestimmt, nennt man diesen Vorgang kalibrieren.

Quelle: Institut für Medizinische Physik und Biostatistik, Vet. Univ. Wien