Graphische Darstellung von Feldern

Aus Schulphysikwiki
Wechseln zu: Navigation, Suche

Verschiedene Darstellungsmöglichkeiten

Untersucht man ein Feld mit einem Probekörper, so kann man an jeder Stelle die Stärke und Richtung der Kraft auf den Probekörper messen.

Dadurch kann man für jede Stelle des Feldes eine Stärke und eine Richtung angeben, welche die Dichte und Struktur des Feldes beschreibt.

Diese Eigenschaften kann man unterschiedlich darstellen. Das Feld selbst kann man nicht zeichnen, aber die Zeichnungen geben eine gewisse Vorstellung davon.

Weitere Beispiele

Um herauszufinden was die Bilder darstellen könnten, stellt man sich vor man würde mit einem Probekörper die verschiedenen Stellen des Feldes abtasten.

Bei diesen Darstellungen wurde die felderzeugende Eigenschaft durch eine rote oder blaue Farbe gekennzeichnet.


Quellen und Senken

Bei der Quelle eines Feldes beginnen Feldlinien bei einer Senke enden sie.[2]

Elektrische und magnetische Felder haben Quellen und Senken.

Gravitationsfelder haben nur Senken.

Positive Ladungen sind die Quellen des elektrischen Feldes und negative Ladungen die Senken.

Nordpol-Ladungen sind die Quellen des magnetischen Feldes und Südpol-Ladungen die Senken.

Schwere Massen sind die Senken des Schwerefeldes.

Druck- und Zugspannung

El/Mag-Feld: Beispiel einer Brücke mit tragendem Bogen und Hängeseilen dran??

Das elektrische/magnetische Feld ist parallel zu den Feldlinien unter Zugspannung, senkrecht dazu unter Druckspannung.

"Die Feldlinien sind sich gegenseitig abstoßende Gummibänder."

Das Schwerefeld ist parallel zu den Feldflächen unter Zugspannung, senkrecht dazu unter Druckspannung.

"Die Feldflächen sind sich gegenseitig abstoßende Gummihäute."

Graphische Darstellung der Felder mit Probekörper

Im Probekörpermodell vernächläßigt man die Feldveränderung.

Je nach Modellvorstellung zeichnet man das Feld, in dem sich der Probekörper befindet, anders.

Im einfacheren Probekörpermodell vernachlässigt man die Beeinflussung des Feldes durch die Probeladung. Man zeichnet den Probekörper auf die Feldlinie des ursprünglichen Feldes. Dadurch sieht man gut, wie die Feldlinien die Kraftwirkung auf den Probekörper angeben.

Das veränderte Feld zieht und drückt aktiv am Probekörper.

Im Modell des aktiven Feldes betrachtet man das veränderte Feld. Dadurch kann man sehen, wie durch die Zug- und Druckspannungen des Feldes auf den Probekörper eine Kraft ausgeübt wird.

Wichtige Felder

Das Zentralfeld

Darstellung eines Zentralfeldes mit Dichte, Feldlinien und Flächen.
  • Feld eines kugelförmigen, im Extremfall punktförmigen Gegenstandes mit elektrischer Ladung oder Masse.
  • Ein magnetisches Zentralfeld kann man näherungsweise durch einen sehr langen Stabmagneten realisieren. An beiden Polen ist dann ungefähr ein Zentralfeld.


  • Das elektrische/magnetische Feld zieht längs der Feldlinien an dem geladenen Gegenstand nach Außen.
  • Das Gravitationsfeld drückt den Gegenstand längs der Feldlinien zusammen.


Das homogene Feld

Ein homogenes Feld ist, wie der Name schon sagt, überall gleich. Das heisst seine Dichte/Stärke und seine Struktur (Richtungen) sind überall gleich.

  • Ein Kondensator mit großen Platten und kleinem Abstand hat ein fast homogenes Feld zwischen den Ladungen.
  • Ein kurzer Magnet mit großflächigen Polen, wie ein Scheibenmagnet ebenso.
  • Es gibt keinen "Gravitationskondensator", da es nur positive Massen gibt.
Das Gravitationsfeld ist in dem uns vertrauten Bereich von ca. 10 km Breite, Länge und Höhe fast homogen. (Alle Felder ohne Sprünge oder Knicke sind in einem kleinen Ausschnitt fast homogen!)


  • Das elektrische/magnetische Feld zieht die Platten/Pole aufeinander zu. Senkrecht dazu zieht es die einzelnen Platten/Pole in die Länge.
Darstellung eines fast homogenen Feldes zwischen zwei unterschiedlichen Ladungen.
Eine mögliche Realisierung durch die Magnetisierung eines Ringmagneten.

Probekörper im homogenen Feld

Der Probekörper wird vom Feld in eine Richtung parallel zu den Feldlinien[3] gezogen. Bei positiven, Südpolladungen oder schweren Ladungen in positive Richtung, bei negativen Ladungen oder Südpolladungen in die entgegengesetzte Richtung.

Die nebenstehenden Bilder stellen Beispiele dar:

  • Eine kleine, elektrisch geladene, Kugel in einem Kondensator oder
  • ein magnetischer Pol im Feld eines Ringmagneten oder
  • ein Ball im Schwerefeld der Erde.


  • Das Gravitationsfeld steht parallel zu den Feldflächen unter Zugspannung und zieht den Ball nach rechts in Richtung Erdoberfläche.
  • Das elektrische / magnetische Feld steht parallel zu den Feldlinien unter Zugspannung und zieht die negative / Südpol -Ladung nach links und entsprechend die positive / Nordpol-Ladung nach rechts.
Dieser Ball trägt negative Ladung, Südpolladung oder schwere Ladung (Masse).
Dieser Ball trägt positve Ladung oder Nordpolladung.


Das Feld eines Dipols

Darstellung eines Dipols mit Feld.

Ein Dipol besteht aus zwei unterschiedlichen Ladungen.

  • Zwei unterschiedlich elektrisch geladene Kugeln haben ein Dipolfeld.
  • Ein Stabmagnet hat ein Dipolfeld.
  • Es gibt keine gravitativen Dipolfelder, weil es keine negative schwere Ladung (Masse) gibt.


  • Das elektrische / magnetische Feld zieht die Ladungen längs der Feldlinien aufeinander zu.


Gleichnamige Ladungen

Zwei gleichgroße und gleichnamige Ladungen
  • Das könnte ein Doppelstern wie unser nächster Nachbarstern AlphaCentauri sein, bei Erde und Mond ist das Feld unsymmetrischer.
  • Oder zwei Südpole zweier Magnete.
  • Oder zwei negativ geladene Kugeln.


  • Das Gravitationsfeld steht parallel zu den Flächen unter Zugspannung und zieht die Körper zusammen.
  • Das elektrische und das magnetische Feld steht parallel zu den Feldflächen unter Druckspannung und drückt die Gegenstände auseinander.


Aufgaben

Häufige Fehler

Bei Festmagneten findet man reltiv häufig Darstellungen des Magnetfeldes, die

  • Die Feldlinien verlaufen von Pol zu Pol und treten an einem Festmagneten auch seitlich aus. Damit unterscheidet sich das Feld eines Stabmagneten auch von dem einer Spule. Bei Darstellungen sieht man manchmal die Feldlinien nur an den Stirnflächen austreten.
  • Die Feldlinien treten auch schräg aus der Magnetoberfläche aus, nicht nur senkrecht. Ausschließlich senkrecht austretende Feldlinien findet man bei elektrisch geladenen Leitern, bei denen die elektrischen Ladungen frei verschiebbar sind.

Fußnoten

  1. Man kann die Energiedichte des Feldes oder die Feldstärke im Helligkeitsbild darstellen. Da die Energiedichte direkt mit der Feldstärke zusammenhängt, sind die Darstellungen sehr ähnlich. Weil die Energiedichte quadratisch von der Feldstärke abhängt, nimmt die Energiedichte bei größeren Abständen von den Ladungen schneller ab.
  2. Die Begriffe "Quelle" und "Senke" sind aus der anschaulichen Darstellung mit Hilfe von Feldlinien entstanden. Aus einer Quelle fließt allerdings nichts heraus und in die Senke fließt nichts hinein, denn das Feld ist zeitlich unverändert.
  3. So wurden ja die Feldlinien definiert.

Links