Kraftwirkung auf elektrische Ströme im Magnetfeld - die Lorentzkraft

Aus Schulphysikwiki
Version vom 22. Juni 2022, 17:13 Uhr von Patrick.Nordmann (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

(Kursstufe > Elektro-Magnetismus)

Beispiele

Versuche

Die springenden Kabel

Aufbau

Wenn man einen Bleiakku ("Autobatterie") mit einem Kabel "kurzschließt", fließt ein Strom mit sehr großer Stromstärke. (Deswegen sollte man mit dem Taster den Stromkreis auch nicht zu lange schließen.) Das dazu verwendete Kabel legt man auf verschiedene Arten über eine Stange.

Beobachtung
a) Die beiden Kabel, bei denen der Strom in die gleiche Richtung fließt, werden zusammengezogen. Bei ungleicher Stromrichtung auseinandergedrückt.
b) Die Spule verkürzt sich, sie wird längs ihrer Symmetrieachse zusammengezogen.
Erklärung

Das Magnetfeld steht längs der Feldlinien unter Zugspannung und längs der Feldflächen unter Druckspannung. "Die Feldlinien sind wie sich gegenseitig abstoßende Gummibänder":

Strom im Magnetfeld - der einfachste Elektromotor der Welt

Aufbau

Im Magnetfeld eines Rechteckmagneten befindet sich ein stromdurchflossener Leiter. Das kann einfach ein Kabel sein, eine spezielle "Leiterschaukel" oder eine auf Schienen gelagerte Stange.

Beobachtung

Die Stange rollt aus dem Magneten heraus oder hinein, je nach Stromrichtung.

Die Leiterschaukel oder das Kabel steht bei eingeschaltetem Strom schräg. Je größer die Stromstärke, desto schräger steht die Schaukel. (Animationsfilm)

Ändert man die Stromrichtung oder vertauscht durch Umdrehen des Magneten die Pole, so wird die Schaukel in die andere Richtung gedrückt.

Verdreht man den Magneten, und der Leiter steht nicht senkrecht zu den Feldlinien, sondern schräg, ist der Effekt geringer.

Ergebnis
Die Kraftwirkung auf eine bewegte positive Ladung und auf die Leiterschaukel.

Auf einen stromdurchflossenen Leiter, der senkrecht zu den Feldlinien eines Magnetfeldes steht, wirkt eine Kraft.

Die Kraftrichtung kann man mit Hilfe der UVW- oder Drei-Finger-Regel bestimmen:

UVW- oder Drei-Finger-Regel
Daumen Zeigefinger Mittelfinger
Drei Finger Regel.jpg
Ursache Vermittlung Wirkung
Stromrichtung[1]
(+ zu -)
Feldlinienrichtung Kraftrichtung

Zeichnet man die Feldlinien- und Flächen, so erkennt man wie das Magnetfeld den Leiter in eine Richtung drückt.

Man kann auch einen der Ströme als den felderzeugenden auffassen und den Strom im anderen Kabel als Probestrom, ähnlich wie Probekörper in einem Feld. Das wird zwar der symmetrischen Anordnung nicht gerecht, liefert aber für spätere Rechnungen durchaus das richtige Ergebnis.

Versuch: Magnetfelduntersuchung mit einem Probestrom

Aufbau

Ein bewegliches Kabel aus Kupfergeflecht hängt direkt hinter einem Festmagnet. Dann schaltet man die Spannungsquelle an und läßt Strom durch das Kabel fließen.

Versuch Probestrom Lorentzkraft.jpg
Beobachtung

Das Kabel bewegt sich schnell um den Nordpol herum und "springt" zur Vorderseite des Magneten.

Erklärung
Die Lorentzkraft wirkt immer senkrecht zu den Feldlinien und zur Stromrichtung.

Die Lorentzkraft auf das stromdurchflossene Kabel wirkt immer senkrecht zu den Feldlinien. Gäbe es bei der Bewegung des Kabels mehr Reibung, würde das Kabel sich entlang einer Feldfläche bewegen, ähnlich wie sich die schwimmende Magnetnadel parallel zu den Feldlinien bewegt hat. Durch das Kabel fließt ein "Probestrom", mit dem man, ähnlich wie mit einer Probeladung, die Richtung und Stärke der Magnetfelds untersuchen kann.

Messen der Lorentzkraft / magnetische Feldkonstante

Aufbau

Eine lange Spule, ein Leiter an einem Kraftmesser innerhalb der Spule,

Links

Lorentzkraft
homopolare Motoren

Fußnoten

  1. Oft wird auch anstatt der Stromrichtung die Bewegungsrichtung der Elektronen verwendet, welche ja in Metallen die Ladungsträger sind. Dann muss man die linke Hand verwenden und den Daumen in Bewegungsrichtung der Elektronen halten. Zeigefinger und Mittelfinger zeigen in Feldlinien- und Kraftrichtung.
    Es ist aber nicht notwendig zwischen Metallen mit Elektronen als Ladungsträgern und anderen Ladungstransporten mit Ionen in Flüssigkeiten oder mit "Löchern" bei Halbleitern zu unterscheiden. Es kommt nur auf die Netto-Ladungstransportrichtung an und die hat man für die positiven Ladungsträger von + zu - festgelegt. Es gibt also nur eine Stromrichtung, egal in welche Richtung sich die Ladungsträger bewegen.