Ladung als Quellenstärke und der Fluss eines Feldes

Aus Schulphysikwiki
Wechseln zu: Navigation, Suche

Fragestellung: Feldstärke und "Feldliniendichte"

Felder Zentralfeld viel Ladung.png
Der Fluß durch beide Flächen ist gleichgroß (4 Linien). Bei der äußeren Fläche ist die Flußdichte ("Liniendichte") geringer.

Die Fragestellung lautet:

Wie kann man bei gegebener Verteilung der Ladung (magnetische, elektrische oder schwere) die Feldstärke an einer Stelle berechnen?

Aus unseren bisherigen Erfahrungen können wir zwei qualitative Aussagen machen:

  1. Je kleiner der Abstand von der Ladung, desto größer die Feldstärke.
  2. Je größer die felderzeugende Ladung, desto größer die Feldstärke.

Um zu einer vorläufigen Antwort zu kommen, schaut man sich die graphische Darstellung eines Zentralfeldes nochmal genau an. Vom geladenen Gegenstand gehen die Feldlinien aus und durchstoßen orthogonal die Feldflächen.

An den Orten mit großer Feldstärke liegen die gezeichneten Linien dichter beisammen.

Wie kann man das präzisieren? Die Feldflächen haben mit zunehmendem Abstand von der Ladung eine immer größeren Flächeninhalt. Die Anzahl der sie durchdringenden Linien bleibt aber immer gleich. Als "Dichte" der Feldlinien könnte man also die "Anzahl der Linien" pro Fläche verstehen.

Stellt man sich eine Bewegung entlang der Linien vor, so fließt sie parallel zu den Linien aus der Ladung heraus durch die Flächen. Dieser "Feldfluß" ist überall gleichgroß.

Mit größerem Abstand zur Ladung werden die Feldflächen größer und somit wird der Fluß pro Fläche, die "Flußdichte", kleiner.

Diese Interpretation der Feldlinien führt zu einem Bild, dass der Intensität einer Kreiswelle ähnelt. Im Unterschied zur Welle ist das hier betrachtete Feld aber zeitlich konstant. Der Feldfluß nur eine anschauliche Vorstellung.

Feldstärke eines Zentralfeldes

Das Zentralfeld ist besonders übersichtlich und auch leicht in einem Experiment zu realisieren. Deswegen betrachten wir erst diesen Spezialfall.

Feldstärke und Fluß

Wenn die Flußdichte oder "Feldliniendichte" ein Maß für die Feldstärke sein soll, dann muß in dem Maße wie der Inhalt der Feldfläche zunimmt, die Feldstärke abnehmen. Das soll durch eine Messung an einem Zentralfeld überprüft werden.

Wie könnte die Feldstärke abnehmen?

  1. Antiproportional zum Radius: Doppelter Abstand --> halbe Feldstärke
  2. Antiproportional zum Inhalt der Feldfläche: Doppelter Abstand (Vierfacher Flächeninhalt [math]A=4 \pi r^2[/math]) --> viertel Feldstärke

Zur Überprüfung messen wir die Kraftwirkung auf einen Probenordpol im Feld des Nordpols eines langen Stabmagneten. Wir stellen fest: Verdoppelt man den Abstand der Pole und vervierfacht damit den Inhalt der Feldfläche, so verringert sich die Feldstärke auf ein Viertel!

Das Produkt aus Feldstärke und Flächeninhalt ist also für alle Feldflächen gleichgroß. Es gibt anschaulich an, "wieviele" Feldlinien durch die Fläche verlaufen und ist ein Maß für den Fluß des Feldes.

Auch für das elektrische Feld kann man diesen Zusammenhang messen und findet das gleiche Ergebnis! Für das Schwerefeld gilt dies ebenso. Schon Newton kannte diesen Zusammenhang für das Gravitationsfeld. Er ergibt sich aus der Beobachtung der Planeten.

Die Feldstärke eines Zentralfeldes nimmt in dem Maße ab, wie der Inhalt der Feldlfläche zunimmt.
Der Feldfluß[1] ist überall gleich:
[math]g \sim \frac{1}{A} [/math]   oder [math]g \, A[/math] ist konstant        "Doppelte Fläche --> Halbe Feldstärke"

[math]E \sim \frac{1}{A}[/math]  oder [math]E \, A[/math] ist konstant          [math]A=4 \pi r^2[/math]

[math]H \sim \frac{1}{A}[/math]  oder [math]H \, A[/math] ist konstant

Feldstärke und felderzeugende Ladung

Je kleiner die Ladung, desto kleiner die Quellstärke des Flußes.
Die größere Quellstärke wird durch mehr Feldlinien dargestellt.

Wieder kann man im Falle der magnetischen Ladungen relativ einfach messen. Dazu verdoppeln wir die felderzeugende Ladung des Stabmagneten, indem wir einen zweiten parallel dazu befestigen. Jetzt messen wir wieder die Kraftwirkung auf den Probenordpol.

Wir stellen fest: Bei der doppelten felderzeugenden Ladung ist die Kraftwirkung und somit auch die Feldstärke doppelt so groß!

Die Ladung beschreibt die Quellenstärke des Feldflußes, also "wieviele" Feldlinien aus der Ladung herauskommen.

Dieser Zusammenhang gilt auch für das schwere und das elektrische Feld. Der Mond hat z.B. nur ca. 1/81 der Erdmasse. In einem Abstand von 3600 km vom Mondmittelpunkt, was dem Erdradius entspricht, ist daher auch die Kraftwirkung nur 1/81 der Erdanziehungskraft.

Die Feldstärke eines Zentralfeldes ist proportional zur Ladung des Zentralkörpers:

[math]g \sim m \qquad  E \sim Q \qquad H \sim Q_m [/math]    "Doppelte Ladung --> Doppelte Feldstärke"


Feldfluß, Quellenstärke und Feldkonstanten

Die beiden Zusammenhänge zwischen Feldstärke und Flächeninhalt einerseits und Feldstärke und Ladung andererseits kann man nun zusammenfassen. Am Beispiel für das elektrische Feld:

[math] E \, A \sim Q[/math]

Normalerweise fügt man nun an der rechten Seite der Gleichung eine Proportionalitätskonstante ein. Es hat sich aber eingebürgert, sie auf der linken Seite einzufügen.

[math]\epsilon_0 \, E \, A = Q[/math]

Die sogenannte "elektrische Feldkonstante" [math]\epsilon_0[/math] beschreibt, wie die Einheiten der drei Größen zusammenhängen: Bei einer Feldstärke von 1 N/C und einer Oberfläche von 1m2 beträgt die von der Fläche umschloßene Ladung [math]8{,}85 \cdot 10^{-12} \mathrm C[/math].[2]

Dies ist nun die Präzisierung, die wir gesucht haben! Anstatt zu sagen, dass die Feldlinien dicht liegen beschreiben wir das mit einem großen Feldfluß durch die Fläche. Den Fluß des elektrischen Feldes legen wir als [math]\epsilon_0 \, E \, A[/math] festReferenzfehler: Für ein <ref>-Tag fehlt ein schließendes </ref>-Tag.
Referenzfehler: Es sind <ref>-Tags vorhanden, jedoch wurde kein <references />-Tag gefunden.