Dynamik (Zentripetalkraft und Bahnimpuls) der Kreisbewegung: Unterschied zwischen den Versionen

Aus Schulphysikwiki
Wechseln zu: Navigation, Suche
(qualitative Ergebnisse)
(mit Differentialrechnung)
(27 dazwischenliegende Versionen des gleichen Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
 +
([[Inhalt_Klasse_10|'''Klassische Mechanik''']] > [[Inhalt_Klasse_10#Kreisbewegungen)|'''Kreisbewegungen''']])
 +
 
==Beispiele==
 
==Beispiele==
 
<gallery widths=200px heights=150px  perrow=3 >
 
<gallery widths=200px heights=150px  perrow=3 >
 
  Bild:Auto_mit_Dreckspritzern.jpg|Wie ist wohl dieses schöne Muster zustandegekommen?
 
  Bild:Auto_mit_Dreckspritzern.jpg|Wie ist wohl dieses schöne Muster zustandegekommen?
  Bild:Kreisbewegung_Hammerwerfen_Flanagan_1909.jpg|Wie schafft es der Hammerwerfer diese Stahlkugel so weit zu werfen? [http://www.youtube.com/watch?v=4qAE2PrCVhY&feature=related Video: Weltrekordwurf von Youri Sedykh]  
+
  Bild:Kreisbewegung_Hammerwerfen_Flanagan_1909.jpg|Wie schafft es der Hammerwerfer diese Stahlkugel so weit zu werfen? Videos: [http://www.youtube.com/watch?v=4qAE2PrCVhY&feature=related Weltrekordwurf von Youri Sedykh], [https://www.youtube.com/watch?time_continue=265&v=q60Qif0J1Bs Weltmeisterin Betty Heidler im Interview]
  Bild:Hammerwerfen_Technik.jpg
+
  Bild:Hammerwerfen_Technik.jpg|Eine Technikstudie.
 
  Bild:Kreisbewegung_Milchschäumer_reinigen_0.jpg|Wenn man einen Milchaufschäumer zum Reinigen...
 
  Bild:Kreisbewegung_Milchschäumer_reinigen_0.jpg|Wenn man einen Milchaufschäumer zum Reinigen...
 
  Bild:Kreisbewegung_Milchschäumer_reinigen_1.jpg|in einen Wasserstrahl hält...
 
  Bild:Kreisbewegung_Milchschäumer_reinigen_1.jpg|in einen Wasserstrahl hält...
 
  Bild:Kreisbewegung_Milchschäumer_reinigen_2.jpg|spritzt das Wasser nach allen Seiten weg.
 
  Bild:Kreisbewegung_Milchschäumer_reinigen_2.jpg|spritzt das Wasser nach allen Seiten weg.
 
  Bild:Kettenkarussell.jpg|Sitzt du lieber Außen oder Innen?
 
  Bild:Kettenkarussell.jpg|Sitzt du lieber Außen oder Innen?
  Bild:Motorradrennen.jpg|Warum schneidet man beim Motorradrennen die Kurve?<br>Video: [https://www.youtube.com/watch?v=Co5tvEZAlJc Die Kurve schneiden]
+
  Bild:Motorradrennen.jpg|Warum schneidet man beim Motorradrennen die Kurve?<br>Videos: [https://www.youtube.com/watch?v=Co5tvEZAlJc Unfallrisiko Kurven], [https://www.youtube.com/watch?v=qyoUUlJ3L-I Richtig durch die Kurve fahren]
 
  Bild:Kurve_schneiden_Kurvenradius.png|Wikipedia: [https://de.wikipedia.org/wiki/Ideallinie Ideallinie]
 
  Bild:Kurve_schneiden_Kurvenradius.png|Wikipedia: [https://de.wikipedia.org/wiki/Ideallinie Ideallinie]
  
Zeile 14: Zeile 16:
  
 
===Versuch: Tennisball schleudern===
 
===Versuch: Tennisball schleudern===
Simuliert den Hammerwurf oder die Matsch-/Wasserspritzer. Wie fliegt der Hammer (der Matsch, das Wasser) weg?
+
Simuliert den Hammerwurf oder die Matsch-/Wasserspritzer. Man bindet einen Tennisball an eine Schnur und schleudert ihn wie beim Hammerwerfen. An einer Stelle im Raum steht ein Ziel, vielleicht ein Stapel Dosen.
 +
*Zu welchem Zeitpunkt, bzw. an welchem Ort, muss man die Schnur loslassen, um zu treffen?
 +
*Fliegt der Ball nach dem Loslassen noch eine Kurve?
 +
*Was verändert sich, wenn man schneller dreht?
 +
*Was verändert sich, wenn man einen Ball mit mehr Masse schleudert?
  
 
===Versuch: Karussell fahren===
 
===Versuch: Karussell fahren===
Ein kleines, nachgebautes Karussell mit Playmobilmännchen.
+
;Aufbau
 +
<gallery widths=200px heights=150px  perrow=1>
 +
Bild:Versuch Karussell.jpg|Ein kleines Karussell mit Playmobilfiguren.
 +
</gallery>
 +
 
 +
;Beobachtung
 +
<gallery widths=200px heights=150px  perrow=2>
 +
Bild:Versuch Karussell langsam.jpg|Bei langsamer...
 +
Bild:Versuch Karussell schnell.jpg|und schneller Fahrt.
 +
</gallery>
 +
 
 +
*[http://www.walter-fendt.de/ph6de/carousel_de.htm Animation eines Karussells] (Walter Fendt)
  
 
===Versuch: Rutschende Münzen/fallende Männchen/rollende Kugeln===
 
===Versuch: Rutschende Münzen/fallende Männchen/rollende Kugeln===
Zeile 23: Zeile 40:
  
 
Wer fällt als erstes um?
 
Wer fällt als erstes um?
 
===Um die Kurve fahren===
 
Warum schneidet man beim Motorradrennen die Kurve?
 
 
  
 
===qualitative Ergebnisse===
 
===qualitative Ergebnisse===
  
 +
{|class="wikitable" style="border-style: solid; border-width: 4px "
 +
|
 
*Eine Kraft hält den Gegenstand auf der Kreisbahn. Sie wirkt senkrecht zur Bahn in Richtung des Mittelpunkts der Kreisbewegung.
 
*Eine Kraft hält den Gegenstand auf der Kreisbahn. Sie wirkt senkrecht zur Bahn in Richtung des Mittelpunkts der Kreisbewegung.
 
:Ohne diese "Zentripetalkraft" fliegt der Gegenstand tangential auf einer geraden Linie weg!
 
:Ohne diese "Zentripetalkraft" fliegt der Gegenstand tangential auf einer geraden Linie weg!
 
 
*Hammerwerfen: Je größer die Masse des Gegenstandes und je größer die Frequenz, desto größer muß die Zentripetalkraft sein.
 
*Hammerwerfen: Je größer die Masse des Gegenstandes und je größer die Frequenz, desto größer muß die Zentripetalkraft sein.
*Karussell fahren: Bei gleicher Frequenz braucht man weiter Außen die größere Zenripetalkraft!
+
*Karussell fahren: Bei gleicher Frequenz braucht man weiter Außen die größere Zentripetalkraft!
*Kurve fahren: Bei gleicher (Bahn)Geschwindigkeit braucht man für eine engere Kurve die größere Zentripetalkraft!
+
*Kurve fahren: Bei gleicher Bahngeschwindigkeit braucht man für eine engere Kurve die größere Zentripetalkraft!
 
+
 
*Durch die Zentripetalkraft wird der Gegenstand nicht schneller. Die Zentripetalkraft ändert ständig die Richtung des Impulses, aber nicht die Menge des Impulses! Auch die Energiemenge bleibt konstant.
 
*Durch die Zentripetalkraft wird der Gegenstand nicht schneller. Die Zentripetalkraft ändert ständig die Richtung des Impulses, aber nicht die Menge des Impulses! Auch die Energiemenge bleibt konstant.
 +
|}
  
 
==Versuch: Messung der Zentripetalkraft==
 
==Versuch: Messung der Zentripetalkraft==
Zeile 66: Zeile 80:
  
 
==Berechnung der Zentripetalkraft==
 
==Berechnung der Zentripetalkraft==
[[Datei:Kreisbewegung Bewegungsgesetze Einheitskreis.png|thumb|300px|Eine Kugel bewegt sich um ein Kreiszentrum im Abstand 2.]]
+
Ein Gegenstand mit bekannter Masse <math>m</math> und Geschwindigkeit <math>v</math> umläuft ein Drehzentrum im Abstand <math>r</math>.  
Ein Gegenstand mit bekannter Masse <math>m</math> umläuft ein Drehzentrum im Abstand <math>r</math> und der Winkelgeschwindigkeit <math>\omega</math>. Welche Zentripetalkraft benötigt man, um den Gegenstand auf der Kreisbahn zu halten?
+
*Welche Zentripetalkraft benötigt man, um den Gegenstand auf der Kreisbahn zu halten?
  
Die [[Kinematik_(Bahngeschwindigkeit_und_Frequenz)_der_Kreisbewegung#Bewegungsgesetze_der_Kreisbewegung|Bewegungsgleichungen der Kreisbewegung]] beschreiben den zeitlichen Verlauf des Ortes, der Geschwindigkeit und der Beschleunigung:
+
====ohne Differentialrechnung====
 +
Man stellt sich eine Kugel vor, die innerhalb eines ringförmigen Billiardtisches ohne Reibung mit einer betragsmäßig konstanten Geschwindigkeit rollt.<ref>Der Drehimpuls der Billiardkugel wird hier ignoriert. Eine korrekte Vorstellung erhält man, wenn man die Kugel "sehr klein" wählt, so dass der Drehimpuls keine große Rolle spielt. Die Idee dieser Herleitung stammt von Christiaan Huygens und Isaac Newton. (Vgl. [[Literatur/Links#Geschichte_der_Physik|[Sim]]], S.256)</ref>
  
 +
Jedesmal, wenn die Kugel an die Bande stößt, erhält sie eine Impulsmenge, um die Richtung der Bewegung zu verändern. Der Betrag <math>p</math> des Impulses bleibt dabei unverändert.
 +
 +
Verläuft die Bahn der Kugel nahe der Bande, stößt sie sehr oft und die Bahn nähert sich einer Kreisbahn an.
 +
 +
Bei der Zeichnung kann man mit dem Schieberegler die Anzahl der Ecken verändern:
 +
 +
{{#widget:Iframe
 +
|url=https://www.geogebra.org/material/iframe/id/m2ZzWy29/width/629/height/423/border/888888/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/false/rc/false/ld/false/sdz/false/ctl/false
 +
|width=420
 +
|height=283
 +
|border=0
 +
}}
 +
 +
Man entnimmt der Zeichnung sofort, dass die Impulsänderung, also auch die Kraft, in Richtung des Mittelpunktes gerichtet ist.
 +
 +
Den Betrag der Impulsänderung <math>\Delta p</math> bei einem Stoß an der Bande kann man für ein beliebiges n-Eck berechnen. Man stellt fest, dass die Dreiecke <math>\triangle \rm MAB</math> und <math>\triangle \rm NCD</math> beide gleichschenklig sind und den gleichen "Spitzenwinkel" haben. Deshalb stimmen sie in allen Winkeln überein und sind ähnlich. Daraus, oder aus den Strahlensätzen, folgen die Verhältnisse:
 +
 +
:<math>
 +
\begin{alignat}{2}
 +
\frac{\Delta p}{\Delta s} &= \frac{p}{r} & \quad |\cdot \Delta s \\
 +
\Rightarrow \quad \Delta p &= \frac{\Delta s \, p}{ r}
 +
\end{alignat}
 +
</math>
 +
 +
Zur Berechnung der Kraft benötigt man noch die Zeit, in der diese Impulsänderung stattfindet. Die Zeit für die Bewegung längs einer Seite des n-Ecks soll <math>\Delta t</math> heißen.
 +
Im Mittel beträgt daher die Impulsänderung pro Zeit:
 +
:<math>\bar F = \frac{\Delta p}{\Delta t} = \frac{\Delta s \, p}{\Delta t \, r}  </math>
 +
Der Quotient von Strecke und Zeit ist aber gerade die Geschwindigkeit der Kugel:
 +
:<math>\bar F = \frac{v \, p}{r} </math>
 +
Zur Vereinfachung kann man nun entweder den Impuls als <math>p=m\,v</math> einsetzen oder die Winkelgeschwindigkeit <math>\omega =\frac{v}{r}</math>:
 +
:<math>\bar F = \frac{m\, v^2}{r} = \omega \, p</math>
 +
Für eine immer größere Anzahl von Ecken wird die Bewegung kreisförmig und die Richtungsänderung kontinuierlich. Die mittlere Änderung des Impulses pro Zeit geht in eine momentane Änderung des Impulses über.
 +
 +
Diesen Grenzwertprozess kann man sich ersparen, wenn man die Differentialrechnung, also Ableitungen, verwendet.
 +
 +
====mit Differentialrechnung====
 +
[[Datei:Kreisbewegung_Einheitsvektoren.png|thumb|410px|Die Einheitsvektoren des Ortes, der Geschwindigkeit und der Beschleunigung.]]
 +
Die [[Kinematik_(Bahngeschwindigkeit_und_Frequenz)_der_Kreisbewegung#Bewegungsgesetze_der_Kreisbewegung|Bewegungsgleichungen der Kreisbewegung]] beschreiben den zeitlichen Verlauf des Ortes, der Geschwindigkeit und der Beschleunigung:
  
 
:<math>
 
:<math>
Zeile 82: Zeile 135:
 
Der Impuls des Gegenstandes ist parallel zur Geschwindigkeit (<math>\vec p = m \, \vec v</math>), man muss nur mit der Masse multiplizieren.
 
Der Impuls des Gegenstandes ist parallel zur Geschwindigkeit (<math>\vec p = m \, \vec v</math>), man muss nur mit der Masse multiplizieren.
  
Die Kraft erhält durch Ableiten des Impulses (<math> \vec F = \dot {\vec p}</math>) oder als das m-fache der Beschleunigung (<math>\vec F = m \, \vec a</math>):
+
Die Kraft erhält man durch Ableiten des Impulses nach der Zeit (<math> \vec F = \dot {\vec p}</math>) oder als das m-fache der Beschleunigung (<math>\vec F = m \, \vec a</math>):
  
<math>
+
:<math>
 
\begin{array}{cc}
 
\begin{array}{cc}
 
\vec s(t)= \;\;\;\; r \ \vec {s_0}  &  \\
 
\vec s(t)= \;\;\;\; r \ \vec {s_0}  &  \\
Zeile 94: Zeile 147:
 
</math>
 
</math>
  
Alle Bewegungsgesetze sind der Form "Zahl mal Vektor". Die Vektoren haben alle die Länge eins und geben daher nur die Richtung an.Der Impulssvektor ist tangential zur Kreisbahn und die Kraft zeigt zur Kreismitte.
+
Wie zu erwarten ist der Impulsvektor tangential zur Kreisbahn und die Kraft zeigt zur Kreismitte. Die Zahl vor dem Vektor ist der Betrag des Impulses und der Zentripetalkraft. Der Betrag des Impulses und der Kraft ändert sich nicht mit der Zeit, nur die Richtung von Impuls und Kraft ändern sich ständig.
Die Zahl vor dem Vektor ist daher gerade der Betrag des Ortes, der Geschwindigkeit, usw.
+
  
Die Richtung der Vektoren verändert sich mit der Zeit, dagegen bleiben die Beträge immer konstant.
+
{|class="wikitable" style="border-style: solid; border-width: 4px "
 +
|
 +
Bewegt sich ein Gegenstand der Masse <math>m</math> mit der Winkelgeschwindigkeit <math>\omega</math> im Abstand <math>r</math> um ein Drehzentrum, so hat er den Impuls <math> \vec p </math> mit:
 +
:<math> p = m\,\omega\, r </math>
  
 +
Um den Gegenstand auf der Kreisbahn zu halten, benötigt man eine Zentripetalkraft <math>\vec F</math> mit:
 +
:<math> F = m\,\omega^2\, r </math>
 +
|}
  
[[Datei:Bewegungsdiagramme_Merkregel_Kreisbewegung.png|300px]]
+
==Formeln==
+
 
+
===Formeln===
+
====Für gegebene Winkelgeschwindigkeit====
+
Beschreibt eine Situation, in der die Frequenz, Umlaufdauer oder Winkelgeschwindigkeit festgelegt ist. Z. B. eine Waschmaschine, Karussell, Plattenspieler, etc.
+
 
+
Die obige Berechnung der Impuls- und Kraftvektoren lieferte den Betrag der Zentripetalkraft. Mit  <math>\omega = 2\,\pi\,f = \frac{2\,\pi}{T}</math> läßt sich die Winkelgeschwindigkeit auch mit der Frequenz oder der Umlaufdauer berechnen.
+
:<math>F = m \, \omega^2  r = m \ 4\, \pi^2 \! f^2 \; r = m \, \frac{ 4 \, \pi^2 }{T^2} \, r</math>
+
Die Zentripetalkraft ist bei fester Frequenz proportional zum Radius! (doppelter Radius - doppelte Kraft)
+
 
+
 
====Für gegebene Bahngeschwindigkeit====
 
====Für gegebene Bahngeschwindigkeit====
 
Beschreibt eine Situation, bei der die Bahngeschwindigkeit festgelegt ist. Z. B. ein Fahrrad (Auto, Inliner, ...), das in die Kurve fährt.
 
Beschreibt eine Situation, bei der die Bahngeschwindigkeit festgelegt ist. Z. B. ein Fahrrad (Auto, Inliner, ...), das in die Kurve fährt.
Zeile 118: Zeile 166:
 
:<math>F=\frac{m \, v^2}{r}</math>
 
:<math>F=\frac{m \, v^2}{r}</math>
 
Die Zentripetalkraft ist bei fester Bahngeschwindigkeit antiproportional zum Radius! (doppelter Radius - halbe Kraft)
 
Die Zentripetalkraft ist bei fester Bahngeschwindigkeit antiproportional zum Radius! (doppelter Radius - halbe Kraft)
 +
 +
====Für gegebene Winkelgeschwindigkeit====
 +
Beschreibt eine Situation, in der die Frequenz, Umlaufdauer oder Winkelgeschwindigkeit festgelegt ist. Z. B. eine Waschmaschine, Karussell, Plattenspieler, etc.
 +
 +
Die obige Berechnung der Impuls- und Kraftvektoren lieferte den Betrag der Zentripetalkraft. Mit  <math>\omega = 2\,\pi\,f = \frac{2\,\pi}{T}</math> läßt sich die Winkelgeschwindigkeit auch mit der Frequenz oder der Umlaufdauer berechnen.
 +
:<math>F = m \, \omega^2  r = m \ 4\, \pi^2 \! f^2 \; r = m \, \frac{ 4 \, \pi^2 }{T^2} \, r</math>
 +
Die Zentripetalkraft ist bei fester Frequenz proportional zum Radius! (doppelter Radius - doppelte Kraft)
  
 
====Mischform mit Impuls====
 
====Mischform mit Impuls====
Zeile 126: Zeile 181:
 
Die Zentripetalkraft ist proportional zur Winkelgeschwindigkeit und zur Impulsmenge:
 
Die Zentripetalkraft ist proportional zur Winkelgeschwindigkeit und zur Impulsmenge:
 
   
 
   
:<math>F_Z = p\, \omega \qquad \text{mit} \quad p=m\, v\qquad \text{und} \quad  \omega = \frac{v}{r}</math>
+
:<math>F = \omega\, p</math> <ref>Man kann mit Hilfe des Vektor- oder [https://de.wikipedia.org/wiki/Kreuzprodukt Kreuzproduktes] die Zentripetalkraft auch vektoriell beschreiben: <math>\vec F = \vec \omega \times \vec p</math>. Der Vektor der Winkelgeschwindigkeit ist dabei über die [[Magnetfelderzeugung_durch_elektrische_Ströme#Ergebnisse|Rechte-Hand-Regel]] festgelegt. Die Richtung der Zentripetalkraft ergibt sich aus der [http://schulphysikwiki.de/index.php/Datei:Drei_Finger_Regel.jpg U-V-W-Regel], für die man auch <math>\vec U \times \vec V = \vec W</math> schreiben kann.</ref> <math>\text{} \qquad \text{mit} \quad p=m\, v\qquad \text{und} \quad  \omega = \frac{v}{r}</math>
 
   
 
   
"Man benötigt eine große Kraft um viel Impuls stark abzulenken.""
+
"Man benötigt eine große Kraft um viel Impuls stark abzulenken."
 
|}
 
|}
 +
Im Falle der konstanten Bahngeschwindigkeit ist auch der Impuls konstant. Die Winkelgeschwindigkeit und damit auch die Kraft ist antiproportional zum Radius. Denn bei doppeltem Radius ist die Winkelgeschwindigkeit nur noch halb so groß.
 +
 
Im Falle der konstanten Winkelgeschwindigkeit steigt die Impulsmenge und damit auch die Kraft proportional zum Radius. Denn bei doppeltem Radius verdoppelt sich auch der Umfang und somit die Bahngeschwindigkeit und der Impuls.
 
Im Falle der konstanten Winkelgeschwindigkeit steigt die Impulsmenge und damit auch die Kraft proportional zum Radius. Denn bei doppeltem Radius verdoppelt sich auch der Umfang und somit die Bahngeschwindigkeit und der Impuls.
  
Im Falle der konstanten Bahngeschwindigkeit ist auch der Impuls konstant. Die Winkelgeschwindigkeit und damit auch die Kraft ist antiproportional zum Radius. Denn bei doppeltem Radius ist die Winkelgeschwindigkeit nur noch halb so groß.
+
==Merkregel==
 +
[[Datei:Bewegungsdiagramme_Merkregel_Kreisbewegung.png|300px]]
  
 
==Links==
 
==Links==
*[http://www.youtube.com/watch?v=4qAE2PrCVhY&feature=related youtube: hammer throw: 1986 Youri Sedykh's World Record Series]
+
*Video: [http://www.youtube.com/watch?v=4qAE2PrCVhY&feature=related youtube: hammer throw: 1986 Youri Sedykh's World Record Series]
*[http://www.spokeo.com/Tatyana+Lysenko+1/Jul+03+2010+Track+And+Field+36th+Prefontaine+Classic#1772231:21579141 Hammerwerferin Tatyana Lysenko]
+
*Video: [https://www.youtube.com/watch?time_continue=265&v=q60Qif0J1Bs Weltmeisterin im Hammerwerfen Betty Heidler exklusiv im Interview]
 
* Wikimedia Commons: [http://commons.wikimedia.org/wiki/Category:Hammer_throw?uselang=de#mediaviewer/File:EVD-martillo-000.jpg Bilderserie zum Hammerwerfen]
 
* Wikimedia Commons: [http://commons.wikimedia.org/wiki/Category:Hammer_throw?uselang=de#mediaviewer/File:EVD-martillo-000.jpg Bilderserie zum Hammerwerfen]
 +
*Videos:  [https://www.youtube.com/watch?v=Co5tvEZAlJc Unfallrisiko Kurven], [https://www.youtube.com/watch?v=qyoUUlJ3L-I Richtig durch die Kurve fahren]
 +
*Wikipedia: [https://de.wikipedia.org/wiki/Ideallinie Ideallinie]
  
 
==Fußnoten==
 
==Fußnoten==

Version vom 5. November 2017, 07:25 Uhr

(Klassische Mechanik > Kreisbewegungen)

Beispiele

Versuch: Tennisball schleudern

Simuliert den Hammerwurf oder die Matsch-/Wasserspritzer. Man bindet einen Tennisball an eine Schnur und schleudert ihn wie beim Hammerwerfen. An einer Stelle im Raum steht ein Ziel, vielleicht ein Stapel Dosen.

  • Zu welchem Zeitpunkt, bzw. an welchem Ort, muss man die Schnur loslassen, um zu treffen?
  • Fliegt der Ball nach dem Loslassen noch eine Kurve?
  • Was verändert sich, wenn man schneller dreht?
  • Was verändert sich, wenn man einen Ball mit mehr Masse schleudert?

Versuch: Karussell fahren

Aufbau
Beobachtung

Versuch: Rutschende Münzen/fallende Männchen/rollende Kugeln

Münzen, Kugeln, Männchen drehen sich mit der gleichen Frequenz in unterschiedlichem Abstand zum Mittelpunkt auf einer drehenden Scheibe (Plattenspieler)

Wer fällt als erstes um?

qualitative Ergebnisse

  • Eine Kraft hält den Gegenstand auf der Kreisbahn. Sie wirkt senkrecht zur Bahn in Richtung des Mittelpunkts der Kreisbewegung.
Ohne diese "Zentripetalkraft" fliegt der Gegenstand tangential auf einer geraden Linie weg!
  • Hammerwerfen: Je größer die Masse des Gegenstandes und je größer die Frequenz, desto größer muß die Zentripetalkraft sein.
  • Karussell fahren: Bei gleicher Frequenz braucht man weiter Außen die größere Zentripetalkraft!
  • Kurve fahren: Bei gleicher Bahngeschwindigkeit braucht man für eine engere Kurve die größere Zentripetalkraft!
  • Durch die Zentripetalkraft wird der Gegenstand nicht schneller. Die Zentripetalkraft ändert ständig die Richtung des Impulses, aber nicht die Menge des Impulses! Auch die Energiemenge bleibt konstant.

Versuch: Messung der Zentripetalkraft

Versuchsaufbau zur Messung der Zentripetalkraft. [1]
Aufbau

Ein kleiner Wagen ist auf einer Schiene befestigt. Die Schiene kann mit einem Motor unterschiedlich schnell gedreht werden.

Eine Schnur ist an einem Kraftsensor und über eine Umlenkrolle am Wagen befestigt. Dreht sich die Schiene, so zieht die Schnur am Wagen und hält ihn so auf einer Kreisbahn. Diese Zentripetalkraft wird mit einem Kraftsensor gemessen.[2]

Die Zentripetalkraft wird dann in Abhängigkeit vom Radius, der Winkelgeschwindigkeit und der Masse des Wagens gemessen. Dazu verändert man jeweils eine Größe und läßt die anderen konstant. Insbesondere ist von Interesse, wie sich bei einer Verdopplung des Radiuses oder der Winkelgeschwindigkeit oder der Masse die notwendige Zentripetalkraft ändert.

Mit einer Handstoppuhr kann man die Umlaufdauer ermitteln, am besten indem man die Zeit für 10 Umläufe bestimmt.

Die Masse wird mit einer Waage bestimmt.

Messungen
Ergebnisse

Berechnung der Zentripetalkraft

Ein Gegenstand mit bekannter Masse [math]m[/math] und Geschwindigkeit [math]v[/math] umläuft ein Drehzentrum im Abstand [math]r[/math].

  • Welche Zentripetalkraft benötigt man, um den Gegenstand auf der Kreisbahn zu halten?

ohne Differentialrechnung

Man stellt sich eine Kugel vor, die innerhalb eines ringförmigen Billiardtisches ohne Reibung mit einer betragsmäßig konstanten Geschwindigkeit rollt.[3]

Jedesmal, wenn die Kugel an die Bande stößt, erhält sie eine Impulsmenge, um die Richtung der Bewegung zu verändern. Der Betrag [math]p[/math] des Impulses bleibt dabei unverändert.

Verläuft die Bahn der Kugel nahe der Bande, stößt sie sehr oft und die Bahn nähert sich einer Kreisbahn an.

Bei der Zeichnung kann man mit dem Schieberegler die Anzahl der Ecken verändern:

Man entnimmt der Zeichnung sofort, dass die Impulsänderung, also auch die Kraft, in Richtung des Mittelpunktes gerichtet ist.

Den Betrag der Impulsänderung [math]\Delta p[/math] bei einem Stoß an der Bande kann man für ein beliebiges n-Eck berechnen. Man stellt fest, dass die Dreiecke [math]\triangle \rm MAB[/math] und [math]\triangle \rm NCD[/math] beide gleichschenklig sind und den gleichen "Spitzenwinkel" haben. Deshalb stimmen sie in allen Winkeln überein und sind ähnlich. Daraus, oder aus den Strahlensätzen, folgen die Verhältnisse:

[math] \begin{alignat}{2} \frac{\Delta p}{\Delta s} &= \frac{p}{r} & \quad |\cdot \Delta s \\ \Rightarrow \quad \Delta p &= \frac{\Delta s \, p}{ r} \end{alignat} [/math]

Zur Berechnung der Kraft benötigt man noch die Zeit, in der diese Impulsänderung stattfindet. Die Zeit für die Bewegung längs einer Seite des n-Ecks soll [math]\Delta t[/math] heißen. Im Mittel beträgt daher die Impulsänderung pro Zeit:

[math]\bar F = \frac{\Delta p}{\Delta t} = \frac{\Delta s \, p}{\Delta t \, r} [/math]

Der Quotient von Strecke und Zeit ist aber gerade die Geschwindigkeit der Kugel:

[math]\bar F = \frac{v \, p}{r} [/math]

Zur Vereinfachung kann man nun entweder den Impuls als [math]p=m\,v[/math] einsetzen oder die Winkelgeschwindigkeit [math]\omega =\frac{v}{r}[/math]:

[math]\bar F = \frac{m\, v^2}{r} = \omega \, p[/math]

Für eine immer größere Anzahl von Ecken wird die Bewegung kreisförmig und die Richtungsänderung kontinuierlich. Die mittlere Änderung des Impulses pro Zeit geht in eine momentane Änderung des Impulses über.

Diesen Grenzwertprozess kann man sich ersparen, wenn man die Differentialrechnung, also Ableitungen, verwendet.

mit Differentialrechnung

Die Einheitsvektoren des Ortes, der Geschwindigkeit und der Beschleunigung.

Die Bewegungsgleichungen der Kreisbewegung beschreiben den zeitlichen Verlauf des Ortes, der Geschwindigkeit und der Beschleunigung:

[math] \begin{array}{rrr} \vec s(t)= \;\;\;\; r \begin{pmatrix} \;\;\cos(\omega\,t) \\ \;\;\sin(\omega\,t) \end{pmatrix} = & \;\;\;\; r \ \vec {s_0} & \\ \vec v(t)= \;\omega\, r \begin{pmatrix} -\sin(\omega\,t) \\ \;\;\; \cos(\omega\,t) \end{pmatrix} = & \;\omega\, r \ \vec {v_0} \\ \vec a(t)= \omega^2\, r \begin{pmatrix} -\cos(\omega\,t) \\ -\sin(\omega\,t) \end{pmatrix} = & \omega^2\, r \ \vec {a_0} \end{array} [/math]

Der Impuls des Gegenstandes ist parallel zur Geschwindigkeit ([math]\vec p = m \, \vec v[/math]), man muss nur mit der Masse multiplizieren.

Die Kraft erhält man durch Ableiten des Impulses nach der Zeit ([math] \vec F = \dot {\vec p}[/math]) oder als das m-fache der Beschleunigung ([math]\vec F = m \, \vec a[/math]):

[math] \begin{array}{cc} \vec s(t)= \;\;\;\; r \ \vec {s_0} & \\ \vec v(t)= \;\omega\, r \ \vec {v_0} & \vec p(t)= m\,\omega\, r \ \vec {v_0} \\ \vec a(t)= \omega^2\, r \ \vec {a_0} & \vec F(t)= m\,\omega^2\, r \ \vec {a_0} \end{array} [/math]

Wie zu erwarten ist der Impulsvektor tangential zur Kreisbahn und die Kraft zeigt zur Kreismitte. Die Zahl vor dem Vektor ist der Betrag des Impulses und der Zentripetalkraft. Der Betrag des Impulses und der Kraft ändert sich nicht mit der Zeit, nur die Richtung von Impuls und Kraft ändern sich ständig.

Bewegt sich ein Gegenstand der Masse [math]m[/math] mit der Winkelgeschwindigkeit [math]\omega[/math] im Abstand [math]r[/math] um ein Drehzentrum, so hat er den Impuls [math] \vec p [/math] mit:

[math] p = m\,\omega\, r [/math]

Um den Gegenstand auf der Kreisbahn zu halten, benötigt man eine Zentripetalkraft [math]\vec F[/math] mit:

[math] F = m\,\omega^2\, r [/math]

Formeln

Für gegebene Bahngeschwindigkeit

Beschreibt eine Situation, bei der die Bahngeschwindigkeit festgelegt ist. Z. B. ein Fahrrad (Auto, Inliner, ...), das in die Kurve fährt.

Man setzt dazu die Winkelgeschwindigkeit [math]\omega = \frac{v}{r}[/math] ein und kürzt mit dem Radius [math]r[/math]:

[math]F=\frac{m \, v^2}{r}[/math]

Die Zentripetalkraft ist bei fester Bahngeschwindigkeit antiproportional zum Radius! (doppelter Radius - halbe Kraft)

Für gegebene Winkelgeschwindigkeit

Beschreibt eine Situation, in der die Frequenz, Umlaufdauer oder Winkelgeschwindigkeit festgelegt ist. Z. B. eine Waschmaschine, Karussell, Plattenspieler, etc.

Die obige Berechnung der Impuls- und Kraftvektoren lieferte den Betrag der Zentripetalkraft. Mit [math]\omega = 2\,\pi\,f = \frac{2\,\pi}{T}[/math] läßt sich die Winkelgeschwindigkeit auch mit der Frequenz oder der Umlaufdauer berechnen.

[math]F = m \, \omega^2 r = m \ 4\, \pi^2 \! f^2 \; r = m \, \frac{ 4 \, \pi^2 }{T^2} \, r[/math]

Die Zentripetalkraft ist bei fester Frequenz proportional zum Radius! (doppelter Radius - doppelte Kraft)

Mischform mit Impuls

Mit [math]p = m \, v[/math] und [math]v=\omega \, r[/math] kann man die Größe der benötigten Zentripetalkraft auch mit dem Impuls ausdrücken:

Die Zentripetalkraft ist proportional zur Winkelgeschwindigkeit und zur Impulsmenge:

[math]F = \omega\, p[/math] [4] [math]\text{} \qquad \text{mit} \quad p=m\, v\qquad \text{und} \quad \omega = \frac{v}{r}[/math]

"Man benötigt eine große Kraft um viel Impuls stark abzulenken."

Im Falle der konstanten Bahngeschwindigkeit ist auch der Impuls konstant. Die Winkelgeschwindigkeit und damit auch die Kraft ist antiproportional zum Radius. Denn bei doppeltem Radius ist die Winkelgeschwindigkeit nur noch halb so groß.

Im Falle der konstanten Winkelgeschwindigkeit steigt die Impulsmenge und damit auch die Kraft proportional zum Radius. Denn bei doppeltem Radius verdoppelt sich auch der Umfang und somit die Bahngeschwindigkeit und der Impuls.

Merkregel

Bewegungsdiagramme Merkregel Kreisbewegung.png

Links

Fußnoten

  1. Der Sensor hat gegenüber einem Federkraftmesser den Vorteil, dass er sich nur unwesentlich dehnt und dadurch den Radius der Kreisbewegung fast nicht ändert.
  2. Der Drehimpuls der Billiardkugel wird hier ignoriert. Eine korrekte Vorstellung erhält man, wenn man die Kugel "sehr klein" wählt, so dass der Drehimpuls keine große Rolle spielt. Die Idee dieser Herleitung stammt von Christiaan Huygens und Isaac Newton. (Vgl. [Sim], S.256)
  3. Man kann mit Hilfe des Vektor- oder Kreuzproduktes die Zentripetalkraft auch vektoriell beschreiben: [math]\vec F = \vec \omega \times \vec p[/math]. Der Vektor der Winkelgeschwindigkeit ist dabei über die Rechte-Hand-Regel festgelegt. Die Richtung der Zentripetalkraft ergibt sich aus der U-V-W-Regel, für die man auch [math]\vec U \times \vec V = \vec W[/math] schreiben kann.


Zeugs

Handversuch: Gummiprofen an Schnur durch Rohr

Viele Möglichkeiten

Genaue Vorgaben machen

ZB Abhängigkeit Frequenz - Kraft

Radius - Kraft

Masse - Kraft