Aufgaben zum elektrischen Feld (Lösungen): Unterschied zwischen den Versionen
(→Zum Kondensator) |
|||
Zeile 15: | Zeile 15: | ||
==Zum Kondensator== | ==Zum Kondensator== | ||
− | + | =====1) Ein mechanischer Vergleich===== | |
+ | Vergleichen Sie einen Kondensator mit einem Fahrradreifen. | ||
− | + | =====2) Bauformen===== | |
+ | Beschreiben Sie eine technische Bauform eines Kondensators. | ||
:(Wikipedia: [https://de.wikipedia.org/wiki/Kondensator_(Elektrotechnik)#Bauarten_und_Bauformen Bauformen von Kondensatoren], [https://duckduckgo.com/?q=capacitor+inside&t=ffsb&iax=1&ia=images Bilder], ...) | :(Wikipedia: [https://de.wikipedia.org/wiki/Kondensator_(Elektrotechnik)#Bauarten_und_Bauformen Bauformen von Kondensatoren], [https://duckduckgo.com/?q=capacitor+inside&t=ffsb&iax=1&ia=images Bilder], ...) | ||
− | + | =====3) Kennlinie===== | |
+ | Ein idealer Kondensator hat eine konstante Kapazität von 0,33F bei maximal 5V Spannung. Zeichnen Sie die U(Q)-Kennlinie. Lesen Sie an der Kennlinie ab wieviel Ladung und Energie der Kondensator maximal aufnehmen kann. | ||
− | + | =====4) Dielektrikum===== | |
+ | Wie verändert ein Dielektrikum die Eigenschaften eines Kondensators? Was bedeutet <math>\epsilon_r=3</math>? | ||
− | + | =====5) Plattenkondensator mit und ohne Dielektrikum===== | |
+ | Berechnen Sie für einen Plattenkondensator mit kreisförmigen Platten (r=12,25cm) im Abstand von 1cm die Kapazität mit Luft im Zwischenraum. | ||
Der Kondensator wird mit 10kV geladen. Berechnen Sie: | Der Kondensator wird mit 10kV geladen. Berechnen Sie: | ||
Zeile 36: | Zeile 41: | ||
:<math>C= \epsilon_0\,\frac{A}{d} = 8{,}854 \cdot 10^{-12} \frac {\mathrm{A}\,\mathrm{s}} {\mathrm{V}\,\mathrm{m}} \cdot \frac{\pi \cdot (0{,}1225\,\rm m)^2}{0{,}01\,\rm m} \approx 4{,}17 \cdot 10^{-11} \,\rm F = 41{,}7 \cdot 10^{-12} \,\rm F = 41{,}7 \,\rm pF </math> | :<math>C= \epsilon_0\,\frac{A}{d} = 8{,}854 \cdot 10^{-12} \frac {\mathrm{A}\,\mathrm{s}} {\mathrm{V}\,\mathrm{m}} \cdot \frac{\pi \cdot (0{,}1225\,\rm m)^2}{0{,}01\,\rm m} \approx 4{,}17 \cdot 10^{-11} \,\rm F = 41{,}7 \cdot 10^{-12} \,\rm F = 41{,}7 \,\rm pF </math> | ||
− | a) Die Feldstärke ist die räumliche Änderungsrate des Potentials: | + | '''a)''' Die Feldstärke ist die räumliche Änderungsrate des Potentials: |
:<math>E=\frac{U}{d} = \rm \frac{10^4\,\rm V}{0{,}01\,\rm m} = 10^6\,\rm\frac{V}{m} </math> | :<math>E=\frac{U}{d} = \rm \frac{10^4\,\rm V}{0{,}01\,\rm m} = 10^6\,\rm\frac{V}{m} </math> | ||
− | b) Die Ladungsmenge bestimmt man am einfachsten mit der Kapazität oder über die Ladung als Quellenstärke: | + | '''b)''' Die Ladungsmenge bestimmt man am einfachsten mit der Kapazität oder über die Ladung als Quellenstärke: |
:<math>Q=C\,U = 41{,}7 \cdot 10^{-12} \,\rm F \cdot 10^4\,\rm V = 41{,}7 \cdot 10^{-8} \,\rm C = 417 \cdot 10^{-9} \,\rm C = 417\,\rm nC </math> | :<math>Q=C\,U = 41{,}7 \cdot 10^{-12} \,\rm F \cdot 10^4\,\rm V = 41{,}7 \cdot 10^{-8} \,\rm C = 417 \cdot 10^{-9} \,\rm C = 417\,\rm nC </math> | ||
:<math>Q=\epsilon_0 \, E \, A = 8{,}854 \cdot 10^{-12} \frac {\mathrm{A}\,\mathrm{s}} {\mathrm{V}\,\mathrm{m}} \cdot 10^6\,\rm\frac{V}{m} \cdot \pi \cdot (0{,}1225\,\rm m)^2 \approx 4{,}17 \cdot 10^{-7} \,\rm C </math> | :<math>Q=\epsilon_0 \, E \, A = 8{,}854 \cdot 10^{-12} \frac {\mathrm{A}\,\mathrm{s}} {\mathrm{V}\,\mathrm{m}} \cdot 10^6\,\rm\frac{V}{m} \cdot \pi \cdot (0{,}1225\,\rm m)^2 \approx 4{,}17 \cdot 10^{-7} \,\rm C </math> | ||
− | c) Die Energie kann man nun auf verschiedene Weise berechnen: | + | '''c)''' Die Energie kann man nun auf verschiedene Weise berechnen: |
:<math>W=\frac{1}{2} \, Q \, U = \frac{Q^2}{2\ C} = \frac{1}{2}\, C \, U^2 = 2{,}09 \cdot 10^{-3} \,\rm J \approx 2\, \rm mJ</math> | :<math>W=\frac{1}{2} \, Q \, U = \frac{Q^2}{2\ C} = \frac{1}{2}\, C \, U^2 = 2{,}09 \cdot 10^{-3} \,\rm J \approx 2\, \rm mJ</math> | ||
− | d) Zur Berechnung der Kraft auf die Platten hat man viele Möglichkeiten. Am einfachsten ist es über die gespeicherte Energie: | + | '''d)''' Zur Berechnung der Kraft auf die Platten hat man viele Möglichkeiten. Am einfachsten ist es über die gespeicherte Energie: |
:<math>F=\frac{1}{2} \, Q \, E = \frac{1}{2}\, \epsilon_0 \,A\,E^2 = \frac{Q^2}{2\epsilon_0\,A} = \frac{W}{d} = \frac{2{,}09 \cdot 10^{-3} \,\rm J }{5 \cdot 0{,}01\,\rm m} = 0{,}209 \,\rm N \approx 0{,}2\,\rm N</math> | :<math>F=\frac{1}{2} \, Q \, E = \frac{1}{2}\, \epsilon_0 \,A\,E^2 = \frac{Q^2}{2\epsilon_0\,A} = \frac{W}{d} = \frac{2{,}09 \cdot 10^{-3} \,\rm J }{5 \cdot 0{,}01\,\rm m} = 0{,}209 \,\rm N \approx 0{,}2\,\rm N</math> | ||
− | e) Die Kapazität des Kondensators ist nun 6 mal größer als vorher: | + | '''e)''' Die Kapazität des Kondensators ist nun 6 mal größer als vorher: |
:<math>C = \epsilon_0\,\epsilon_r\,\frac{A}{d} = \frac{Q}{U} = 6 \cdot 41{,}7 \,\rm pF = 250\, pF</math> | :<math>C = \epsilon_0\,\epsilon_r\,\frac{A}{d} = \frac{Q}{U} = 6 \cdot 41{,}7 \,\rm pF = 250\, pF</math> | ||
Zeile 69: | Zeile 74: | ||
:<math>F=\frac{1}{2} \, Q \, E = \frac{1}{2}\, \epsilon_0 \, \epsilon_r \,A\,E^2 = \frac{Q^2}{2\epsilon_0\,\epsilon_r\,A} = \frac{W}{d} = 6\cdot 0{,}209 \,\rm N = 1{,}25 \,\rm N</math> | :<math>F=\frac{1}{2} \, Q \, E = \frac{1}{2}\, \epsilon_0 \, \epsilon_r \,A\,E^2 = \frac{Q^2}{2\epsilon_0\,\epsilon_r\,A} = \frac{W}{d} = 6\cdot 0{,}209 \,\rm N = 1{,}25 \,\rm N</math> | ||
− | + | =====6) Kondensatoren statt Benzin===== | |
+ | Ein Liter Benzin enthält ca. 30 MJ Energie. Welcher Kondensator könnte das Benzin als Energieträger ersetzen? | ||
<br/>Baut man einen Plattenkondensator mit Luft zwischen den Platten, so springt ab einer Feldstärke von 2,5 kV/mm ein Funke über und der Kondensator ist entladen. | <br/>Baut man einen Plattenkondensator mit Luft zwischen den Platten, so springt ab einer Feldstärke von 2,5 kV/mm ein Funke über und der Kondensator ist entladen. | ||
:a) Entwerfen Sie einen Plattenkondensator, der die gleiche Energiemenge wie ein Liter Benzin speichern kann. (Tipp: Berechnen Sie zuerst die maximale Energiedichte des Kondensators! Dann legen Sie die Spannung fest und berechnen damit den Abstand und die Fläche.) | :a) Entwerfen Sie einen Plattenkondensator, der die gleiche Energiemenge wie ein Liter Benzin speichern kann. (Tipp: Berechnen Sie zuerst die maximale Energiedichte des Kondensators! Dann legen Sie die Spannung fest und berechnen damit den Abstand und die Fläche.) | ||
Zeile 93: | Zeile 99: | ||
:b) Entwerfen Sie für die verschiedenen Dielektrika wieder einen Kondensator, der 30MJ Energie aufnehmen kann! | :b) Entwerfen Sie für die verschiedenen Dielektrika wieder einen Kondensator, der 30MJ Energie aufnehmen kann! | ||
− | + | =====7) Plattenziehen I===== | |
+ | Ein aufgeladener Plattenkondensator wird von der Spannungsquelle getrennt und die Platten auseinandergezogen. | ||
:a) Wie verändert sich die Spannung, die Ladungsmenge auf den Platten und die Kapazität? | :a) Wie verändert sich die Spannung, die Ladungsmenge auf den Platten und die Kapazität? | ||
:b) Wie verändert sich die Feldstärke und der Energiegehalt? | :b) Wie verändert sich die Feldstärke und der Energiegehalt? | ||
:c) Wo kommt die nötige Energie her? | :c) Wo kommt die nötige Energie her? | ||
− | + | =====8) Plattenziehen II===== | |
+ | Bei dem Plattenkondensator bleibt beim Auseinanderziehen diesmal die Spannungsquelle angeschlossen. Man stellt sich die gleichen Fragen: | ||
:a) Wie verändert sich die Spannung, die Ladungsmenge auf den Platten und die Kapazität? | :a) Wie verändert sich die Spannung, die Ladungsmenge auf den Platten und die Kapazität? | ||
:b) Wie verändert sich die Feldstärke und der Energiegehalt? | :b) Wie verändert sich die Feldstärke und der Energiegehalt? |
Version vom 5. Mai 2017, 23:08 Uhr
Inhaltsverzeichnis
[Verbergen]HINWEIS
Die Lösungen sind noch nicht ausgearbeitet. Sie kommen nach und nach hinzu.
Wer will kann gerne Lösungen verfassen und hier reinschreiben.
Tipps und Lösungsansätze
Zum Kondensator
2) Das Schaubild des U(Q)-Diagramms ist eine Ursprungsgerade.
Die maximale Spannung beträgt 5V, die maximale Ladung Q=CU=0,33F⋅5V=1,65C
Die Energiemenge entspricht der Dreiecksfläche unter dem Schaubild: E=0,5⋅5V⋅1,65C=4,125J
Zum Kondensator
1) Ein mechanischer Vergleich
Vergleichen Sie einen Kondensator mit einem Fahrradreifen.
2) Bauformen
Beschreiben Sie eine technische Bauform eines Kondensators.
- (Wikipedia: Bauformen von Kondensatoren, Bilder, ...)
3) Kennlinie
Ein idealer Kondensator hat eine konstante Kapazität von 0,33F bei maximal 5V Spannung. Zeichnen Sie die U(Q)-Kennlinie. Lesen Sie an der Kennlinie ab wieviel Ladung und Energie der Kondensator maximal aufnehmen kann.
4) Dielektrikum
Wie verändert ein Dielektrikum die Eigenschaften eines Kondensators? Was bedeutet ϵr=3
5) Plattenkondensator mit und ohne Dielektrikum
Berechnen Sie für einen Plattenkondensator mit kreisförmigen Platten (r=12,25cm) im Abstand von 1cm die Kapazität mit Luft im Zwischenraum.
Der Kondensator wird mit 10kV geladen. Berechnen Sie:
- a) wie stark das elektrische Feld ist,
- b) wieviel Ladung auf den Platten ist,
- c) wieviel Energie gespeichert ist und
- d) welche Kraft auf die Platten wirkt.
- e) Nun füllt man den Zwischenraum des Kondensators mit Polytetrafluorethylen (Teflon). Es hat eine Permittivität von ϵr=2. Dann lädt man den Kondensator wieder mit 10kV auf. Berechnen Sie, wie sich die Werte von a) bis d) verändern und wie sich die Energie auf das Feld und das polarisierte Teflon verteilt.
Die Kapazität kann man nur direkt über die Eigenschaften des Kondensators berechnen, weil man die gespeicherte Ladung noch nicht kennt:
- C=ϵ0Ad=8,854⋅10−12AsVm⋅π⋅(0,1225m)20,01m≈4,17⋅10−11F=41,7⋅10−12F=41,7pF
a) Die Feldstärke ist die räumliche Änderungsrate des Potentials:
- E=Ud=104V0,01m=106Vm
b) Die Ladungsmenge bestimmt man am einfachsten mit der Kapazität oder über die Ladung als Quellenstärke:
- Q=CU=41,7⋅10−12F⋅104V=41,7⋅10−8C=417⋅10−9C=417nC
- Q=ϵ0EA=8,854⋅10−12AsVm⋅106Vm⋅π⋅(0,1225m)2≈4,17⋅10−7C
c) Die Energie kann man nun auf verschiedene Weise berechnen:
- W=12QU=Q22 C=12CU2=2,09⋅10−3J≈2mJ
d) Zur Berechnung der Kraft auf die Platten hat man viele Möglichkeiten. Am einfachsten ist es über die gespeicherte Energie:
- F=12QE=12ϵ0AE2=Q22ϵ0A=Wd=2,09⋅10−3J5⋅0,01m=0,209N≈0,2N
e) Die Kapazität des Kondensators ist nun 6 mal größer als vorher:
- C=ϵ0ϵrAd=QU=6⋅41,7pF=250pF
Die Feldstärke ist unverändert, weil wieder die gleiche Spannung beim gleichen Plattenabstand anliegt:
- E=Ud=104V0,01m=106Vm
Zur Berechnung der Ladungsmenge muß man berücksichtigen, dass die Kapazität sich versechsfacht hat, also speichert der Kondensator auch 6 mal so viel Ladung. Man kann auch argumentieren, dass man 6 mal soviel Ladung verschieben muss, um die gleiche Feldstärke zu erreichen, da die Polarisationsladungen die effektive Gesamtladung und damit die Feldstärke verringern:
- Q=CU=6⋅417nC=2500nC=2,5μC
Der Kondensator speichert 6 mal so viel Energie, denn die Spannung ist unverändert, Ladung und Kapazität sind aber 6 mal so groß:
- W=12QU=12CU2=6⋅2,09mJ=12,5mJ
Weil die Feldstärke gleich geblieben ist, hat sich die im Feld gespeicherte Energie nicht geändert:
- WFeld=2,09mJ
Zusätzlich kommt jetzt noch die im polarisierten Teflon gespeicherte Energie hinzu, die 5/6 der Gesamtenergie ausmacht. Es wird also fünfmal mehr Energie im Teflon gespeichert als im Feld:
- Wpol=5⋅2,09mJ=10,5mJ
Bei der Kraftwirkung auf die Platten ist die Feldstärke und die Ladungsmenge entscheidend. Die Feldstärke ist unverändert, aber die Ladung auf den Platten ist 6 mal größer. Daher ist auch die Kraft auf die Platten 6 mal größer.
Man kann auch argumentieren, dass die Energiemenge auf das 6fache gestiegen ist.
- F=12QE=12ϵ0ϵrAE2=Q22ϵ0ϵrA=Wd=6⋅0,209N=1,25N
6) Kondensatoren statt Benzin
Ein Liter Benzin enthält ca. 30 MJ Energie. Welcher Kondensator könnte das Benzin als Energieträger ersetzen?
Baut man einen Plattenkondensator mit Luft zwischen den Platten, so springt ab einer Feldstärke von 2,5 kV/mm ein Funke über und der Kondensator ist entladen.
- a) Entwerfen Sie einen Plattenkondensator, der die gleiche Energiemenge wie ein Liter Benzin speichern kann. (Tipp: Berechnen Sie zuerst die maximale Energiedichte des Kondensators! Dann legen Sie die Spannung fest und berechnen damit den Abstand und die Fläche.)
Um die Durchschlagsfestigkeit (das ist die maximale Feldstärke) des Kondensators zu erhöhen, bringt man ein Dielektrikum zwischen die Platten:
Dielektrikum Emax ϵr Glas 20kVmm 7 Polypropylen 52kVmm 2,1 Bariumtitanat 500kVmm 1000 bis 10000
- b) Entwerfen Sie für die verschiedenen Dielektrika wieder einen Kondensator, der 30MJ Energie aufnehmen kann!
7) Plattenziehen I
Ein aufgeladener Plattenkondensator wird von der Spannungsquelle getrennt und die Platten auseinandergezogen.
- a) Wie verändert sich die Spannung, die Ladungsmenge auf den Platten und die Kapazität?
- b) Wie verändert sich die Feldstärke und der Energiegehalt?
- c) Wo kommt die nötige Energie her?
8) Plattenziehen II
Bei dem Plattenkondensator bleibt beim Auseinanderziehen diesmal die Spannungsquelle angeschlossen. Man stellt sich die gleichen Fragen:
- a) Wie verändert sich die Spannung, die Ladungsmenge auf den Platten und die Kapazität?
- b) Wie verändert sich die Feldstärke und der Energiegehalt?
- c) Wo kommt die nötige Energie her?
ZEUGS
Hinweise und Lösungen
Grundlagen
- Entweder mit einem geladenen Probekörper (Monopol) oder mit influenzierten, neutralen Körpern (Dipolen). In beiden Fällen ergibt sich je nach Situation eine Kraftwirkung.
Flächenladungsdichte und erste Maxwellsche Gleichung
- Die Feldstärke nimmt proportional zu 1rab: E=c⋅1r(Vgl. Feld eines geladenen langen Drahtes)
- Demnach hat das Potential die Form φ(r)=c⋅ln(r).
- Mit φ(0,0005m)=10kVkann man die Konstante c bestimmen.