Gedämpfte Schwingungen: Unterschied zwischen den Versionen

Aus Schulphysikwiki
Wechseln zu: Navigation, Suche
(Bei Gleitreibung)
(Bei einem Strömungswiderstand und "großer" Geschwindigkeit)
Zeile 38: Zeile 38:
  
 
===Bei einem Strömungswiderstand und "großer" Geschwindigkeit===
 
===Bei einem Strömungswiderstand und "großer" Geschwindigkeit===
<br/><math>F_{R}\sim v^2</math>
+
Schwingung mit Wirbelbildung
 
<br/>
 
<br/>
<br/>-Wirbelbildung
+
<br/><math>F_{R}\sim v^2</math>
 
<br/>
 
<br/>
  <br/>'''DGL:''' <math>m\ddot y=-Dy-r\dot y^2</math>    <math>\Rightarrow</math><u>ist nicht exakt lösbar!</u>
+
  <br/>'''DGL:''' <math>m\ddot y=-Dy-r\dot y^2</math>    <math>\Rightarrow</math><u>ist nicht exakt lösbar!</u> ''(nur näherungsweise mit Computer)
 +
''
  
 
==Links==
 
==Links==

Version vom 7. Dezember 2006, 16:37 Uhr

Merkmale einer gedämpften Schwingung

Beispiele

Versuch: Schwingende Stange

Aufbau

Datei:Versuchsaufbau Schwingungen gedämpft Stange.jpg
Versuchsaufbau mit Markierungen der Amplitude.

Versuch: Wassergedämpftes Federpendel

Aufbau

Datei:Versuchsaufbau Schwingungen gedämpft.jpg
Versuchsaufbau mit variablen Gewichten und Scheiben.

Beobachtung

Theoretischer Hintergrund

Bei Gleitreibung

Bei Gleitreibung

[math]F_{R}=const.[/math]

Die Amplitude nimmt linear ab, die Frequenz ändert sich nicht.


DGL: [math]m\ddot y=-Dy\pm F_R[/math]

Bei einem Strömungswiderstand und "kleiner" Geschwindigkeit

Schwingfall [math]\quad \mathrm{k^2} \, \lt \, \omega_0^2 \quad \Leftrightarrow \quad r^2 \, \lt \, 4 \mathrm{D m}[/math]
aperiodischer Grenzfall [math]\quad \mathrm{k^2} \, = \, \omega_0^2 \quad \Leftrightarrow \quad r^2 \, = \, 4 \mathrm{D m}[/math]
Kriechfall [math]\quad \mathrm{k^2} \, \gt \, \omega_0^2 \quad \Leftrightarrow \quad r^2 \, \gt \, 4 \mathrm{D m}[/math]

[math]\mathrm{ y(t) = \hat y_0 \quad e^{-K t} }\quad[/math] mit [math]\quad\mathrm{K = k-sqrt{k^2 - \omega_0^2}}[/math]


Bei einem Strömungswiderstand und "großer" Geschwindigkeit

Schwingung mit Wirbelbildung

[math]F_{R}\sim v^2[/math]


DGL: [math]m\ddot y=-Dy-r\dot y^2[/math] [math]\Rightarrow[/math]ist nicht exakt lösbar! (nur näherungsweise mit Computer)

Links