Die Feldstärke als gerichteter Ortsfaktor: Unterschied zwischen den Versionen
(→Versuche zur Feldstärke) |
|||
Zeile 1: | Zeile 1: | ||
Obwohl Feldtheorien, insbesondere die Theorie über elektro-magnetische Felder von Maxwell, die mechanistische Sichtweise der Physik geändert haben, arbeiten sie doch mit mechanischen Grundlagen. | Obwohl Feldtheorien, insbesondere die Theorie über elektro-magnetische Felder von Maxwell, die mechanistische Sichtweise der Physik geändert haben, arbeiten sie doch mit mechanischen Grundlagen. | ||
− | Um die Struktur und Stärke eines Feldes zu untersuchen, benutzt man sogenannte Probekörper und bestimmt die Kraftwirkung. Eine starke Kraftwirkung an einer Stelle läßt auf ein dort starkes Feld schließen, außerdem findet man die Kraftrichtung heraus. | + | Um die Struktur und Stärke eines Feldes zu untersuchen, benutzt man sogenannte [[Felduntersuchung mit Probekörpern (Monopolen)|Probekörper]] und bestimmt die Kraftwirkung. Eine starke Kraftwirkung an einer Stelle läßt auf ein dort starkes Feld schließen, außerdem findet man die Kraftrichtung heraus. |
Gravitationsfelder untersucht man mit einem Gegenstand, der eine Masse hat (Welcher hat das nicht ;), elektrische Felder mit einem positiv geladenen Gegenstand und Magnetfelder mit einem isolierten Nordpol. | Gravitationsfelder untersucht man mit einem Gegenstand, der eine Masse hat (Welcher hat das nicht ;), elektrische Felder mit einem positiv geladenen Gegenstand und Magnetfelder mit einem isolierten Nordpol. | ||
Zeile 12: | Zeile 12: | ||
charge is reversed." ([http://openlibrary.org/books/OL7044103M/Elementary_treatise_on_electricity_and_magnetism Maxwell: A Treatise on Electricity and Magnetism, Chapter One, Description of phenomena, <nowiki>[44]</nowiki> ])</ref> | charge is reversed." ([http://openlibrary.org/books/OL7044103M/Elementary_treatise_on_electricity_and_magnetism Maxwell: A Treatise on Electricity and Magnetism, Chapter One, Description of phenomena, <nowiki>[44]</nowiki> ])</ref> | ||
− | Das elektrische und magnetische Feld kann man auch mit Probekörpern untersuchen, die Dipole sind. Im magnetischen Fall ist das sogar die einzige Möglichkeit, da es keine vollständig isolierten Monopole | + | Das elektrische und magnetische Feld kann man auch [[Dipole im Feld|mit Probekörpern untersuchen, die Dipole sind]]. Im magnetischen Fall ist das sogar die einzige Möglichkeit, da es keine vollständig isolierten Monopole<ref>Vgl. [http://de.wikipedia.org/wiki/Magnetischer_Monopol Wikipedia: magnetische Monopole]</ref> gibt. Durch eine große Entfernung zwischen Nord- und Südpol läßt sich ein singulärer Nordpol experimentell annähern. Gedanklich kann man sich einen Monopol vorstellen und zu nutze machen, ob es ihn gibt oder nicht. |
==Versuche zur Feldstärke== | ==Versuche zur Feldstärke== | ||
− | === | + | ===Eine Federwaage im Gravitationsfeld=== |
[[Bild:Federwaage.jpg|thumb|90px|Einfache Federwaage]] | [[Bild:Federwaage.jpg|thumb|90px|Einfache Federwaage]] | ||
'''Aufbau''' | '''Aufbau''' | ||
Zeile 30: | Zeile 30: | ||
*Die wirkende Kraft ist proportional zur schweren Masse des Probekörpers, bei halber Masse ist die Kraft auch halb so groß: <math>F \sim m </math> | *Die wirkende Kraft ist proportional zur schweren Masse des Probekörpers, bei halber Masse ist die Kraft auch halb so groß: <math>F \sim m </math> | ||
+ | *Macht man die Masse des Probekörpers immer kleiner, so wird das Gravitationsfeld immer weniger gestört. Dabei bleibt aber das Verhältnis von Kraft und Masse konstant. | ||
*Die Kraft pro Masse ("normierte Kraftwirkung") ist also nur vom Ort abhängig und ein Maß für die Stärke des Feldes. | *Die Kraft pro Masse ("normierte Kraftwirkung") ist also nur vom Ort abhängig und ein Maß für die Stärke des Feldes. | ||
Die Feldstärke des Gravitationsfeldes ist der Ortsfaktor <math>\vec g=\frac{\vec F}{m}</math> | Die Feldstärke des Gravitationsfeldes ist der Ortsfaktor <math>\vec g=\frac{\vec F}{m}</math> | ||
mit der Einheit <math>[\vec g]=\mathrm{ \frac{1\, N}{1\, kg} }</math>. | mit der Einheit <math>[\vec g]=\mathrm{ \frac{1\, N}{1\, kg} }</math>. | ||
− | + | Sie gibt die normierte Kraftwirkung auf ein Kilogramm Masse an. | |
<br style="clear: both" /> | <br style="clear: both" /> | ||
− | === | + | ===Vermessung eines Magnetfeldes=== |
[[Bild:Felder_Coulombsches_Abstandsgesetz_Magnet.jpg|thumb|Der Versuchsaufbau.]] | [[Bild:Felder_Coulombsches_Abstandsgesetz_Magnet.jpg|thumb|Der Versuchsaufbau.]] | ||
'''Aufbau''' | '''Aufbau''' | ||
Zeile 47: | Zeile 48: | ||
*Bei der halben Probeladung misst man die halbe Kraftwirkung: <math>F \sim Q_m</math> | *Bei der halben Probeladung misst man die halbe Kraftwirkung: <math>F \sim Q_m</math> | ||
− | + | *Verkleinert man die Ladung des Nordpols immer weiter, so wird das zu untersuchendende Magnetfeld immer weniger gestört. Dabei bleibt aber das Verhältnis von Kraft und magnetischer Ladung konstant. | |
− | + | ||
*Die Kraft pro magnetischer Ladung ("normierte Kraftwirkung") ist also nur vom Ort abhängig und ein Maß für die Stärke des Feldes. | *Die Kraft pro magnetischer Ladung ("normierte Kraftwirkung") ist also nur vom Ort abhängig und ein Maß für die Stärke des Feldes. | ||
Die Feldstärke des Magnetfeldes ist der Ortsfaktor <math>\vec H=\frac{\vec F}{Q_m}</math> | Die Feldstärke des Magnetfeldes ist der Ortsfaktor <math>\vec H=\frac{\vec F}{Q_m}</math> | ||
mit der Einheit <math>[ \vec H] = {\rm \frac{1\, N}{1\, Wb} = \frac{1\, N}{1\, V\,s} = \frac{A}{m} }</math>. | mit der Einheit <math>[ \vec H] = {\rm \frac{1\, N}{1\, Wb} = \frac{1\, N}{1\, V\,s} = \frac{A}{m} }</math>. | ||
− | Hier bleibt zunächst die Frage offen, wie man magnetische Ladungen messen soll. Dies | + | Sie gibt die normierte Kraftwirkung auf ein Weber magnetische Ladung an. |
+ | Hier bleibt zunächst die Frage offen, wie man magnetische Ladungen messen soll. Dies gelingt erst, indem man mit Hilfe des [[Die magnetische Feldstärke|Magnetfeldes einer stromdurchflossenen Spule]] die magnetische Feldstärke festlegt. Man kann also die obige Definition der magnetischen Feldstärke als Definition der magnetischen Ladung interpretieren. | ||
Auch der Sinn der Einheit Ampère pro Meter wird erst im Zusammenhang mit elektrischen Strömen klar. | Auch der Sinn der Einheit Ampère pro Meter wird erst im Zusammenhang mit elektrischen Strömen klar. | ||
<br style="clear: both" /> | <br style="clear: both" /> | ||
− | === | + | ===Vermessung eines elektrischen Feldes=== |
'''Aufbau''' | '''Aufbau''' | ||
− | Zwei Kugeln, aufladen, Kraft mit Sensor messen, Ladung über abfließenden Strom mit Messverstärker. | + | Zwei Kugeln, aufladen, Kraft mit Sensor messen, Ladung über abfließenden Strom mit Messverstärker. ACHTUNG!! Es ist nicht ratsam in der Nähe des CASSY-Messgerätes mit hohen Spannungen zu experimentieren. Die Elektronik kann zerstört werden!<ref>Vgl. [http://www.ld-didactic.de/software/524201.pdf CASSY-Handbuch], S.190</ref> |
'''Beobachtung''' | '''Beobachtung''' | ||
Zeile 71: | Zeile 72: | ||
Die Feldstärke des elektrischen Feldes ist der Ortsfaktor <math>\vec H=\frac{\vec F}{Q}</math> | Die Feldstärke des elektrischen Feldes ist der Ortsfaktor <math>\vec H=\frac{\vec F}{Q}</math> | ||
mit der Einheit <math>[\vec E]=\mathrm{ \frac{1\, N}{1\, C} = \frac{1\, N}{1\, A\,s} = \frac{1\, V}{1\, m} }</math>. | mit der Einheit <math>[\vec E]=\mathrm{ \frac{1\, N}{1\, C} = \frac{1\, N}{1\, A\,s} = \frac{1\, V}{1\, m} }</math>. | ||
+ | Sie gibt die normierte Kraftwirkung auf ein Coulomb elektrische Ladung an. | ||
− | Der Sinn der Einheit Volt pro Meter wird erst klar, wenn man sich mit dem [[Das Potential | + | Der Sinn der Einheit Volt pro Meter wird erst klar, wenn man sich mit dem [[Das Potential eines Feldes|Potential eines Feldes]] beschäftigt. |
− | + | ||
− | + | ||
− | + | ||
− | |||
− | |||
− | |||
− | |||
==Aufgaben== | ==Aufgaben== |
Version vom 12. Juli 2014, 11:31 Uhr
Obwohl Feldtheorien, insbesondere die Theorie über elektro-magnetische Felder von Maxwell, die mechanistische Sichtweise der Physik geändert haben, arbeiten sie doch mit mechanischen Grundlagen.
Um die Struktur und Stärke eines Feldes zu untersuchen, benutzt man sogenannte Probekörper und bestimmt die Kraftwirkung. Eine starke Kraftwirkung an einer Stelle läßt auf ein dort starkes Feld schließen, außerdem findet man die Kraftrichtung heraus.
Gravitationsfelder untersucht man mit einem Gegenstand, der eine Masse hat (Welcher hat das nicht ;), elektrische Felder mit einem positiv geladenen Gegenstand und Magnetfelder mit einem isolierten Nordpol.
Bei dem Vorgehen zieht man sich wie Mönchhausen aus dem Sumpf, weil das zu untersuchende Feld sich durch den Probekörper verändert. Diese Veränderung ist klein, wenn der Probekörper "klein" ist, also zB. eine kleine Masse hat. Es wird sich aber zeigen, dass die Größe des Probekörpers für die Untersuchung gar keine Rolle spielt.[1]
Das elektrische und magnetische Feld kann man auch mit Probekörpern untersuchen, die Dipole sind. Im magnetischen Fall ist das sogar die einzige Möglichkeit, da es keine vollständig isolierten Monopole[2] gibt. Durch eine große Entfernung zwischen Nord- und Südpol läßt sich ein singulärer Nordpol experimentell annähern. Gedanklich kann man sich einen Monopol vorstellen und zu nutze machen, ob es ihn gibt oder nicht.
Inhaltsverzeichnis
Versuche zur Feldstärke
Eine Federwaage im Gravitationsfeld
Aufbau
Man hängt ein Gewicht an eine Feder.
Beobachtung
Die Feder dehnt sich und hängt nach unten, bei zwei Gewichten ist die Verlängerung der Feder auch doppelt so groß. (Sie wird auf Meereshöhe, auf dem Mount Everest oder auf dem Mond unterschiedlich stark gedehnt.)
Erklärung
- Die wirkende Kraft ist proportional zur schweren Masse des Probekörpers, bei halber Masse ist die Kraft auch halb so groß: [math]F \sim m [/math]
- Macht man die Masse des Probekörpers immer kleiner, so wird das Gravitationsfeld immer weniger gestört. Dabei bleibt aber das Verhältnis von Kraft und Masse konstant.
- Die Kraft pro Masse ("normierte Kraftwirkung") ist also nur vom Ort abhängig und ein Maß für die Stärke des Feldes.
Die Feldstärke des Gravitationsfeldes ist der Ortsfaktor [math]\vec g=\frac{\vec F}{m}[/math] mit der Einheit [math][\vec g]=\mathrm{ \frac{1\, N}{1\, kg} }[/math]. Sie gibt die normierte Kraftwirkung auf ein Kilogramm Masse an.
Vermessung eines Magnetfeldes
Aufbau
Der Nordpol eines langen Stabmagnets ist an einem Kraftsensor befestigt. Man bringt den Nordpol in das Feld eines anderen Stabmagneten und misst die auftretenden Kräfte in Stärke und Richtung. (Der Sensor misst die immer nur die Kraftkomponente in einer Richtung.)
Man "verdoppelt" den Probenordpol durch einen zweiten Stabmagneten.
Beobachtung
- Bei der halben Probeladung misst man die halbe Kraftwirkung: [math]F \sim Q_m[/math]
- Verkleinert man die Ladung des Nordpols immer weiter, so wird das zu untersuchendende Magnetfeld immer weniger gestört. Dabei bleibt aber das Verhältnis von Kraft und magnetischer Ladung konstant.
- Die Kraft pro magnetischer Ladung ("normierte Kraftwirkung") ist also nur vom Ort abhängig und ein Maß für die Stärke des Feldes.
Die Feldstärke des Magnetfeldes ist der Ortsfaktor [math]\vec H=\frac{\vec F}{Q_m}[/math] mit der Einheit [math][ \vec H] = {\rm \frac{1\, N}{1\, Wb} = \frac{1\, N}{1\, V\,s} = \frac{A}{m} }[/math]. Sie gibt die normierte Kraftwirkung auf ein Weber magnetische Ladung an.
Hier bleibt zunächst die Frage offen, wie man magnetische Ladungen messen soll. Dies gelingt erst, indem man mit Hilfe des Magnetfeldes einer stromdurchflossenen Spule die magnetische Feldstärke festlegt. Man kann also die obige Definition der magnetischen Feldstärke als Definition der magnetischen Ladung interpretieren.
Auch der Sinn der Einheit Ampère pro Meter wird erst im Zusammenhang mit elektrischen Strömen klar.
Vermessung eines elektrischen Feldes
Aufbau
Zwei Kugeln, aufladen, Kraft mit Sensor messen, Ladung über abfließenden Strom mit Messverstärker. ACHTUNG!! Es ist nicht ratsam in der Nähe des CASSY-Messgerätes mit hohen Spannungen zu experimentieren. Die Elektronik kann zerstört werden![3]
Beobachtung
- Bei der halben Probeladung misst man die halbe Kraftwirkung: [math]F \sim Q[/math]
Erklärung
- Die Kraft pro elektrischer Ladung ("normierte Kraftwirkung") ist also nur vom Ort abhängig und ein Maß für die Stärke des Feldes.
Die Feldstärke des elektrischen Feldes ist der Ortsfaktor [math]\vec H=\frac{\vec F}{Q}[/math] mit der Einheit [math][\vec E]=\mathrm{ \frac{1\, N}{1\, C} = \frac{1\, N}{1\, A\,s} = \frac{1\, V}{1\, m} }[/math]. Sie gibt die normierte Kraftwirkung auf ein Coulomb elektrische Ladung an.
Der Sinn der Einheit Volt pro Meter wird erst klar, wenn man sich mit dem Potential eines Feldes beschäftigt.
Aufgaben
- Gegeben ist Feldstärke: G=5 N/kg und Masse: 50kg -> Kraft?
- Gegeben ist Kraft 20N und Masse 5kg -> Feldstärke?
Ebenso E und H.
Fußnoten
- ↑ "But if the body is very small and its charge also very small, the electrification of the other bodies will not be sensibly disturbed, and we may consider the body as indicating by its centre of gravity a certain point of the field. The force acting on the body will then be proportional to its charge, and will be reversed when the charge is reversed." (Maxwell: A Treatise on Electricity and Magnetism, Chapter One, Description of phenomena, [44] )
- ↑ Vgl. Wikipedia: magnetische Monopole
- ↑ Vgl. CASSY-Handbuch, S.190
Links
- Wikipedia: Magnetostatik Hier wir die magnetische Polstärke angesprochen.
- Wikipedia: magnetische Monopole