|
|
(12 dazwischenliegende Versionen des gleichen Benutzers werden nicht angezeigt) |
Zeile 1: |
Zeile 1: |
| + | Mit dem blauen Schieberegler kann man den Eingabewert <math>x</math> der ersten Funktion einstellen.<br> |
| + | Das Ergebnis ist der Eingabewert der zweiten Funktion, die das Endergebnis liefert. |
| + | *Mit welchen Eingabewerten der ersten Funktion ist das Endergebnis maximal (minimal)? |
| + | *Mit welchen Eingabewerten der ersten Funktion ist das Endergebnis Null? |
| | | |
| + | "Wackelt" man am Eingabewert, so kann man die Änderungsrate der einzelnen Funktionen und der Verkettung erkennen. |
| + | *An welchen Stellen ist die Änderungsrate der einzelnen Funktionen besonders groß? |
| + | *An welchen Stellen ist die Änderungsrate der einzelnen Funktionen Null? |
| + | *An welchen Stellen ist die Änderungsrate der Verkettung besonders groß? |
| + | *An welchen Stellen ist die Änderungsrate der Verkettung Null? |
| | | |
− | <ggb_applet width="922" height="656" version="4.0" ggbBase64="UEsDBBQACAgIABOOcUEAAAAAAAAAAAAAAAAoAAAANGNkNTQ0MjVhYmEyYjg2MDkzNDUxNjk1NTFiZDg4NDBcS1NnLnBuZ+1ZeVSTx9oPlxZQBKWCgiCKoECJxoDIbhBwaymoQBGaEkkElEWERJElQBWJLBqtCEEIgVJBgyyCgGFJtOwSCC4QVkGFRNkxBkwC4eZ9057bnvbee/wOtl/P9/2RnMnMM88y83ue+c0k4aDTPqXl65ZDIBClA/sdDkMgspaSD1dBTtLDVbHYA4FocQ847HY92zsxEHM8cw7/YCbf7hOWQTzaTpO5PYWp4H1j9/Y69dX/0FHF/LSdH6fxUNVeofETzAqBbsqtONtlra/3KiSv+mK7bgH8W7/kGUTeWZ1P0ox/6rZr8XUMiYPL6O7IXe6WIQqPoNiv3cc64OWkj6dE1g7JXqULd2fBuJHPq6q5VMA9yJHKuyR9bKOWMgSSreSLFptxTQmyEIjBQCVmDXqSCx3mSoQSd2jwTjgP47hPkcDYo8ekxTcJGYsRG89weAGS8YqaGVKltsKNqaZ5awQ9izJWxLg+KJEs2dxZXCtgZ10UsPxHDP0HOgTh/M78e98W1JyUh0C6z2lfEtToe4kNfX/wqzXDUZEiDxY7JgshmXn0y/QEAZ75xq1LewW56KnAZpuVEgQSeGDATK5QexOOOp8VbB4FgdieEF6QeB7bIQOBrJIsMcROotf29a8bCuslXzkSlRtxQEMX9+ufcb+e/AdagMl/oAWY9vv5/924pLFdfW4DGpjWQe2gGUl6YyvMs757mwko6T0azEQz+2TfewAKunEY+KI21sqXAI4NOca3tMoKw8Eh19Vu3JeyjEJL4jhgIvssgmlgYfqAYggo/MpEG6vP8WLuBOzde6iooTdlXT/n6PfgXYYH0BWY+qWGnvyGl5G+VD5j5hagPZ4a3dt7uJO26mHd9EWJcyU+Cz6NzfKa02W1ewF7qoh2dQtQecV9Ejx0PxBbUIg+ZvgbwJ3jSTeTr8J/E+Yfra7KUq3x7+dD/qvxDzOrtXyJfPr9fHBa3GXw+4PR8wGRLdmyBnrAGpFJHhc9EgVfMYnoCkUAcDuI9ciWVR5B4q2+doD0ZkFf8pUCuHNT8oj1aqwu+7mqRJmt4ZkGqDs5nzrh6YMPlnsUBKhLeeko19ynOR8JOLB9x1pjW2VQ49ZdrZAelTIYB82sJTWQVmKy1gIqTqwxtr3s1ub+regu4OwXpSkyh+Wd8fxyRBuLnZYpHiNV08R3wCFFstm6Ludh4c1dCIylbN4gc7lE79Ejkz6xUWXe+G+KWHMCDRM33tPn2lpgXPeJJrbC2+w04Z1IBwDkh5+3QXr6Sui67KmotsFXphLzDzqs02RC6d4Lx4oY+gD8v0eyFMLLPMMLnfCd5RtcyWwOtMlxGeC/HrGp/9YN2Mbp8zLzyoD+FQMOkuWKdjm9zfogo7i9gbQgKxSA6bL+PyFjCTDxPwHkvzG7b+kA+W+guHQ59ReFAErHB/rt3c8AKpztoctgSQ4Sb9EdficnlmKhE2Zil/UZMKyZ3ABt6B8YGgROotgcQdKKKzy4H3pXgkdyOlHQREJIYe/09QLMrkQL6yrNro2yw0mkKTdyfmnnFrSTKzn/Xidx2hEAeLYqow0i8KqLmFOhxABO235jnfqdcR83IM/kqLANTI2K7y0PpgrvsFwDGC9e40Hwq2E0DBTx9EZdAOWpxhSZt23xfBta9ESAWLv4MRARJ0quuVVpDMHklwHLYNBAX3FFaPyELxrBwWC1uq/yox/1tpGCwLGW21TBS5kwdJ7ctBWY1zh5zLavyftOpRa055ojEgRdsdF0wBPPP2U3lqawfuzzSuFj14E/58iN3Tp0Kr4FLyUbDsytYKPFOWITuNUNkZ+fH66QshsoB2G8/zIIWiWvNnVaygaw8h93roc29if1bAaU7XzvE9/cakNZDSD5rtOxOGTMEA/E2BMMPAyTiskTU3JMyDJPg30B5rcdyjWx9UL5BNXmmLjgBfgw4SXA1s7+BQJpizaAY8+1lmMvwFqempi9e8l43sfnIH/7wvjxQ/gPxkt6nBqRRI9mwWnmGxLITVPylNNbNXQK2sp/KVo9K65kwAnGUaMW6hLK4gUW3gMSGpLu6RMUXDQAluuMZyGlBiDx7aaEvL0KEg13VNSQA5NMuknlRYA5rFqgqcd/lpb+HDFEATl9TsHgl9zD5aEN5TC015FXkb8qxedk3bhvAk5na03yTkvYiGja2lzK9lk+2cgpnikI2kTj1O9K35nGXGYD0dmbpMmUFngvXEVSQB8N231ia7pKoj9nx+gA1g5HVXrSUt7NkGbm52dJadR2XYtWuLOUlehTOQU/dl7FBkIY9qCuSpjujyKF9gnSnKRav+MBSdRhuXSg+mM4/Z8kzn9VCFLWfi4fs62e2QRtgNYjL1lsAXDyWe0NlSc7psCiqydvbLsG45XQk04ZVMFWjFpXuRQz9EA0IZsh4Xe9FxyKYjaBv5l+sclmd4huRsT3ILNRazQ5yAFxs6bJ+GA7iDOlLeiTruR92FlQAscPwBbV9yf0MBrZTv+6d1bw4GYYbVQTu911YZCQHyZlCq80dOfQWUe4c2dBFl46aqZY+/3uUN8HiL4AaS6hCFgjzPB1pfcgfVan2rtxlXZz3zLMzoHUy9fYN2cU+W1QqGwMEezI09w4pgHmpfehpcfyR39CWPV3Skd7mb+GwjREmNQ5AI3CUwa5Pzf0fMHtDirR5UwkX/1UykiQ8c1tJDx47zovfOMfXB/IIgLgPVhDXhkFBQDWBZh4sJ/QjpNzZKSrgadAjslTHj8A5BKJCuuJoH5FMn963e928xcWB1rL+DNS+/9R/CEh4K1XY+G+u3wNfbdxzpNkwZP/8UzylTwLkG9+H0ikZai8PckMe8urxjxnsdhjGOl15906mbeHihAwsAZmtkIsnpREQ9mD4B3PsIrY7Wh6x3lE2CQVltyVztYJdWm7pOJQn9h3LsUw6f1sjq1h2SoVQ4+oAF0+HKq4+LEGi28hfRHxl2s+VifMQi4eBKK8ebZ4dHGX5T7sAvgq+AWcLBNK814ILdoAkmLDUfZQf5uC4ARzcn5+cv6+SJi5DFQzHFgemv6mk3MBfIB4sPfsMx1INqUOnobmFLRHcpjcJpbya66k+sudgPpu4fBIwVZakMA1EtGNNho8UU0w7WtTxlf/AFY5MbTKM/wG/xtlecnix1a893Aejxp8AWxChxzfbTeiTUQS8m9eU14GDO8kMZtplMdl1WEhllNRyfBGEoGMamAWwRmtVtkeTa3qGKYck+8/YhiY5MZNDIzZ4cKPWfkpRiKojkk29Bk1Kp04IdK1LBMnHkddwptmiC+2h05OTGnBKj0wko6BWEEaqdomx2Vwyrpnljse7nUf30AvFURMHQ3JaKCjUfK3o3kdMZMJmTQSG033drlb3O0ep3yyrNtd5EllTCVkMpLCn+WhUXeLFdb3+94tni0/5hexKV8co1l2u9t93MhOvtJjvAC/1WNBLmcxbRG1oWk+4StAsYrl/TY0aiKgZdSIenqwaoiB0f7NjKDzwnOyqPr59N9IZ4zfu33yzqyaKLHjYdAakb+kK+lZcLwn4g7fXfkC4PqJ6OthJez1yyVKjGbVIL0/oT6T+S2Q7zW1UHl23RcyUU2ZlzWwxxNnccwLJAHpZn9fAbxJ68bX4SbOKRptHeFbOGjWRBSIbOXCPoNJ9xBt60ejSjWZi5DinWx0hYXjnohyFr2LR7d/tpwQMZvyWJH8KqC/3dmi5mTufVRD+PQtywzNcJNFuHarlAWHkRKxG+dOwjnX/UeUcs8MZ8FGhF8quz2+PKxtlbCuraNHG2vGmBsgTQ1zw7jL2AvIubUHKg/1F7+0PquHT80wL3/U+xxZPbJdjWs3OZCkNKYfurCaQN3PXz/WRyMoOv2wdycuj/2eTgxdCCd0B6nOFZiv5BRUxdRmQ3m0sFdKY5jZiuPYzkeo7FmLhHU9HRZpg2E/ei8cKWK8WlV96WW0GvdhVI+4f4ioldilwaolhxkkui7mivZ2ho8eHtHzP2afL7rY5londC2KGf9lAu4ZrIq64Vyty+ksbESHzgnyJCqCZaG6p1fwoEnikAmuS6jI03Wq6d8bwkjkHaVHEPrwXjPRhB9Pb6G2K46PXqPYKO8zMgei9/Bsokf2XpCutCO1WCf6tiftSf1aOMwcWngIQXj/RafA6IJm8TWDR8pk/nhkLX38X25/V/OiSxPf/eL4BZ4bt+Eu0UrV6QeDXbg1RsTX96UyuuKVY/5lXqwRNirMPOk5e8Y6oWotL86+u6qv4NqtxyvIk9drG0X9k1Nctg5OHTpXkPsw/FSrfX4krX4zoawbX4hSjdzMZplH2RG64to75+ktwKOOOMceilM3kEjXhZ96URWj0t9ZMkm18SmgwKKM5qbVCHUHVAuXk+eo4qlc7L1QNYOf9zPu9OCpyfJ4vgtNrEigmhOo7ViehHaFfLan2s7PkjEVWiccQSI4vwSY+7q689Hmd5fdjVj8osHh8ZvQbmGijbOF6550pk2tiymi8FP9QynrLfkMdhgvMmZdmRWCYYWYpO/y+0nnjGbDwuft5/d1JlAF5TJ8jjDgKE3faUwj0+GQ7+tn7UUhojMerj+7NTzRqhlSiQx2J3NjnC127PF8t7L0msHeTTh/vo8zjD8vsqFsQIx1VEm9ghz0/1/4N9AHmDVX/ds+Q2UHiSFDNzVvKAVQtkp6IQf2ODkU2R09909QSwcIqR++zLQNAAAgHQAAUEsDBBQACAgIABOOcUEAAAAAAAAAAAAAAAAoAAAANDNmMzFmODkwYTExMjJkOTVmNmJiMDJhODhjMmZjZTVcS1NmLnBuZ+1XbVSS2Rama2llmrcatbQsrdS+1Fv5RckkpZlmTVZmmmI2OeUHTgRaqFjWaJPCNH1o1yG7M5qVX6gJGQpaKpWKlYnIK1KiksIrEQgogw4vNKs7a90f8+Ouu2atGz/es85+9tn72fvsc87m0t5gf7O5S+bCYDCzgJ3b98FgMwUw2IyLs411kg7fA5dhsAUXA7Zv25/CA/l7sn8aX8qS2QX+sGS700vkyIrlm3c6New0X1A0e2BF9s6yI6cs5vtesS/e1Yhcf2eRyyvkFzJ7+x+Re1fes2+6nGU/YHf23T2TANnybSs3rftXs8XRLkGXiMaPLuhFbJT3stnys015x0S9zy44IghwRvJwr44N9OMeWJYEEYShlP0VmAZ2ePAsaNbORgfa9R8UeZXMhKZ3avaLhqot+QybCW0g6AmJKLs9erxCOEcBBK/Syj8R3uUzX2/vZ0CcephjD4x4S6mCZCbRr24PIDKCoIKHNey6D0y0y9YjHN++ffS0cQy7VjMDgmL6Dop8w+gMoMuB5ScE7pe08bBvHmlAzFwIRtUvxDLK5U8fAehFgl2a+jF5YfKonjPGJDEJeKh2H5NDehnreU4Mvb0QCwE0LN+eCnnOsJCZQVPfZg9omP33z+D/CBxuecWqDjPIbnvvm9y7Wr8/jfOWlmOKs9GQ2HUjjXOmWHFOcsqghjp+cJcdi1GGufs7zg/fHXW3hpa2zrA2RxKuqlJDRwi2YsAGGi7EezDW5/mU5RbIdxj8TnMTU+Fupwpz/fRz1Pv6DwaWEfI/HQp31V8mjZ/B/x8QRRkrlUeSA7EVnLB7mPvst4u1E4Yyz1SkjDzhPjxz0pi0Qn8UXD3x4oh1adb4cvZSUKnF9sfTkll5d1Jt9eYzmsI22PhXkQBZ1ieRV9ikE+50uywGVJeG+BD1x6jxTRmjGnyTLzQBZHs+qY6kPzph1aLM8UoPgaefeM4ysLT+qbSYdNRmhBh188O3Bv7GorO9h1Pp7kNCw4mdF6z63r3SEGnG9WrZZoHygXDtJ2+ph3QcenTueDLSJ3dnGhRfSd7lC0lUoWPJv4WQtggOH1b34n7lXiM5fAybv5m/4YZPTsNXsQR6GkGTMn4WTQua8PyYptP1iuj4vi3umSzoFchY8bDDGfbGb1mZPB3Kam0UnSQtfFnoAtm6PLadbIodO70Gxj0BraY8NX89QdUSOuu8afBVMMlKiMah06TXExVaZmcJNhG3C8Z1hjRdZ+7JqxXHFt6rGbwGoyyEMoFyilwTN2NsVYlRBnk5ZB35soEHBoWZJnWWT18YUiL8W61j2g+K5N4ij/xuU9Kt5IocN50ox80oP1kcYTsnCZ3bSlvoYPJRqv9c7Uh2YBJQkVETuP7SVe2wVm+Py1PPaXEJuQRxxGJ8nRvnoRtH91W/iJpwR0c4Zq+gsMNO/xI12BRpzvE8JELlulTvrpw4Hp2BNa9ZzYh2MYmzLcNQWrMGhqrb0nn3Lp4zs8AhZGZ4r0NCFDlzs8/Mzmu17zlk0SpTozIMd86AjfIUpbXJ2yQu9aW2jM3keU0VsTssjQ+JKCHNHpIhVG4m1pyjtofvnbRz7SELMNhEmmujdxZ55SdfVnw5dsPruq7HMLEt7p/q7xpsy76lsJuW2J1Pgwy9n17+SfdmSFsxobe/kzxX573WBx01iMCsoeRlbjbn6BjCGuMnzA13vqHWLOz1JYERE19lXXbh8Ke6vKWv6/aLTpLbsD5lmHbnGHaQjUB3ovqfHo6CjlN0iSXeA9btEkhI6G1LmNon6sHekKjmXRg3di12BKwUCGKfsgAHPDzTdSKGGLRQsExwrBwxpDgqNbYu21BB5qOitBiytFcalsSxaZxX3+PeoQFYWQArdHRLeGwUXcvxZgVOk4li8BKsPTNACPR7WwFpUWu1yTfgGuBqthhU/xiS02CD+oFIa5C3efvzMOcTx8rlKpxEpcRb5utoGOGf89q+CzV6Ak8w0rbka7a8JE53j8QEBy0R3PCoE7BANTLYTZmYsW3yZ5Bsgk6SsEBuqH5t6/6KPV4UpzjVW5zm3hVgQy2gzJmAr7teK01v3JK/iUGOV8G9h9VVuF8PlFjjPVKWmcdw5F9otprG08Udy0guk4foHmp5ZBwNQc1lPrmFKwyc8spfeLWV1h1KXWqL+RUFn7oEkd8yPws7diLuQ4xmqxE1vaFX2KuY01jEivao5FcCIgnQKqxgLHlXRPjbcHORLKFGOsgffLZWmfh+iy1nJL3RV3WQjt41feMFHlTN4/pBnmedqw3n84kEai6rvlhhlQcebZ4xPbP9ki5/3esl0n7qOb3T8U6vRyMVT3Ak7a0ZQLzOb9VyCq5UQBUygQEhViqavq0QDNFZI7HmhbMLb8kIyNJCTIdza7/ZrSzkCJKr+Rp0JEc6CQULTjJjryR8/bsBEk+GDE+tpwVOx3AIb15vjF2diw79PpQRLTXufBL9j6zwlHecd5lKvPHxtTqyiNsug+F1GYWzmix6xlRAFZr6Pnm0Iqt7Ry6BM3GFYD/8QhdzcXxqB63b9GmFZ0t7QDwlWcg0yXeZf02GNqsV1GRTa/olMqNJ3w2MaLCfO3rRTcAdlHYd6RvPVNZ1qkXRwbuXCHziVfS4dpkRqPYPdsMssJHw1dIZw237wn8J1aWtEddTsHWZ6fmmSn4IyH1i08fES6dCQfkt7KObMboN6wG0RKLX1DeyrseU5EzR23m9o6WDBM9htR9iMT+90/7mMX3w1goeyED2NASpT+IfJzn47yKQS68r8fmxOhNDOGZNDLEwgUXyauHSm+RJxiPHwjM7SV5T++FTjlDRvBo/TmKdR72IUzF2n0eqLOvH/EsIIa3MpfOHnxXJyunHW1qqlVSiVvc0gcJucQN/YFEMlNLFRYUPNnPBSpLuAm3W1f6xkSgZR7tfQQdV6+6e4OgD21bJRzwACLUBT7nP9bWLJaKrW+0wZ6v04fAW2khKjqTAjzNjYZ01jmFoZcq62cYNuGlOIsJ1OD00dVtsno+z59a3WjvdtR+mGRsvVsq0wev1RXgfCZ5pHcVcrAwkgFzdvlr2bdLt63yY6TGeoa3MMTyvX2b/scv8w43zGfwM/kcwJ6VK0RRvaWiNviFe87lxyfA/BukvjnA26LS3l2MjndNW0iMMavk3r78yqXYR2675iAepDnZZjUoS7C4b1jpoOGn1ZDU1YpLinsi2MrSPU3FwGdj8VITeZFi16GPPZd1jGM3iFZYvyvuTP3KxNPRfMMzOP9GhHvnyr9kdfwb/++B9glHBDtLF08UFCZAwYEfw9gpf1PnfAFBLBwgjde2OrgkAAL4SAABQSwMEFAAICAgAE45xQQAAAAAAAAAAAAAAABYAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzSyvNSy7JzM9TSE9P8s/zzMss0dBUqK7lAgBQSwcIRczeXRoAAAAYAAAAUEsDBBQACAgIABOOcUEAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s5Vvrcts2Fv6dPgWG2+nY20gGQICXVG6n6a5nM5vWmXG26+xm24FIkGZNkQpJyXKmP/Zf9xH2rfoO+yR7AJASdIktKXYaTzW2SQIHOMD5zhWiB1/NRjmayqrOyuLYIX3sIFlEZZwV6bEzaZJe4Hz15SeDVJapHFYCJWU1Es2xwxRlFh87nsc8L8TDXhBxr8dYSHpChlEPk5DhgJKhK30HoVmdPSnK78RI1mMRybPoQo7E8zISjWZ80TTjJ0dHV1dX/Y5Vv6zSozQd9md17CBYZlEfO+3NE5huadCVq8kpxuTo/NvnZvpeVtSNKCLpILWFSfblJ48GV1kRl1foKoubi2MH1uigC5mlF7CnAHMHHSmiMQhkLKMmm8oahlqPes/NaOxoMlGo/kfmDuXz7TgozqZZLKtjB/cJwZ4b0NAPfOoyzKiDyiqTRdMSk5bpUTfdYJrJKzOvutMsmYOassyHQk2Jfv4ZUUwxeqwuxFwoXDzPdGHThl1zoebCzIUbGmaGM0PKDA0zNMx10DSrs2Euj51E5DWIMCuSCuCbP9fNdS71etqGxfbJY9hTnb0FYheDgI3MoR3jx+rXg1+mOo6WN0ksrk012ZFpxzKkdHuW9L026nY8CWbrPCl/xza9G5iafW+zT8It0QIr/aN/1zi6N21zlaN5fj+GHvsgWxwcdaYyaK0D1ReKttWeRo5qZS9uiHio1J4gDrbh+aDlHJEQLj5FYA2IcMQ4PJIAeerqI9eHDoZcFCBFR1ykjYMH8If5ejIPcZhMtfpgk4gAI4a4i4i2KYbAkpC2S7BR6gIF54jDIMWeUDWF6yHmwZMbIAZrVCbpEyB0YSA8A3uKXIJcNZj4iHrIU/MRpkzdC9TSYUqKPIw8oiYEqwaLNtYM9AFy1W68VlxZMZ40SyKKRnF325TjORZADf5o4faMf1ryio8GuRjKHALFmUISoanIlUVoRklZNKgDkZq2tBLjiyyqz2TTwKga/SSm4rlo5OwEqOuOt6aNyqJ+UZXNN2U+GRU1QlGZ4/may5xY93S+anhwrQ5md3Crw7Pu/Y18S+hBk1oC/7KqO3IRx88UxcI1gCRPi/z6aSXF5bjMlrcxONIxZyAnUZ7FmSi+B2VVXJRc0DwEKXfVhSCPBt1Cyio+u65Bg9HsH7IqQY4B6XPr40JcvTZdjNI+sz7KL0VC2R7HfWx9KPRct10s7IfWJ/ANZzmdAyRmcrHXtFKGbT08q5+W+aJJb/8bMW4mlU4ewEQrtamvizSXWkW0t4XIHF0Oy9mZ0Q3XzPXyeizVEL2CYarFjsA1UA4hOW2vQ3PVNGppcyqsabCmwJ2yZfG8n4RUU+jr0Fw1FWivWVq7VdJtk+COTVZrh4ad1mw6Z6V0XwX6SZE1z7uHJosu260SM+C7yWgoFxqkCP6UmazEpFvLbMg9shkcrSji4FJWhcxbvQfIJ+WkNmZsmUQso2wEj6ajFZxQoP4N1mRaY5lWsqUXuU7fjFh1L7ZVeq1ZT3VSlaNnxfQlaMzaAmAbFWgRLEJFB9Ott6n31O1hUEdVNlZ6i4YQSS7lQjPjrBYQiGLbNJUZwySRnrLJGiVLMPBJc1GCwrwQTQUiRN/BikeiKNBBHV1M8vHFdZ1dXmWXWT+WhzAxOC8Ypkw8lyPI6FCj9biYjCSMn8MH6eiVKC4nRarTRtjBpJNBn7SbBBBROfwJ3Osq+N1eHw2g/x06jwQsTljz5eJaVkty1rN9W8Yt545vrtJUNMoKPc1IzNQkYCZiWIPvbSBTB2SLRaZuFKz1XZDlqDoAxlDfU3fXyt1jXUYk2czCAMSavQUlE0sbWthfA5HhEtLfWjuJpnUH+uYvWRzLYr5iMdcEcI5jtVqsjGAspbHbdjC0jUEI2hVZHrkF6lbIfv1lFSraGesSVG2ydDtShLvGg6lM8S7QytHnyFIsA12FekuNW6HozVHsMOShZ0FoiD8UgncEYLOKn9vn3sdna16fBi4JuEt2NjmfuXO4/N/Q4tAfkdgE2sJHb4tZtW5z/FbIrEhxz5j1eAsa3xkrF3fe0dx9KKg22BW+1a5m4wp4qUlaEecOgkYQQGUqg5tRzFdR7M1h3Bqgm9fzUs4a0q7pszeTsvni0/Rgdng8+4Gi12/eTETcXVCi2l/XWQHXTz/7A8Ff6D+fHiT/+89/00PVmxyowR3VD9SmM8QzmM5Mqv8i9Dovi3QkxnVTonkrtKsFdM8WiWlBFgO9aGddllAMNc7yNm8OOTtqP95S+7tQB6vTKdLXeV5eyXgtN8vq5+KlPF9OytryrwatSObVvk73cVv2L8xL5XYvVOWAlJnwvutZH6YO5MBogj7FVjMPHPTWTmtvURVvSVUsYLaHwftdweD1SWDDQDQKrO8Tu2CkO6LwI7kDHH78fRmE3/dd64P9Dgm7lfrvRGJJmrpCnwvqdIMkd02GdFm+pSxPk6SWjVYvEwmDmwS9RSDbmCC2ZWZthOeyYPHhRng9lb7YH85cZgvw0UALSh1QLJ1pmdaV+tWWdlSOoFiMUaFPOU8mhdYUZ3HwJvCxY0IRSI3AUtw+YYSH8ERVgqofqMddHoR+2LItJ003NjEcWz5r+CYdx7kt3Ibw/RrL7gnMu6X5Pay+rFZkeYAfI9zK8pSsiWt6s7imZspOFtPfVlj7q+2C1R4Jo3Uo0zqiCByQrDNRbHRIXR6rr9u6//PW8R/8+stS0QqVgzKH5tDAuOSl1oPBsvs63y8OEGoOFPV1Rw+2ezRYgEr6IQ9dL2Tqe0DOecA2ifF+Xc/shwPaWktuXE61ZjPpji4m/bjD8V26oDOZqvZVH5QvfNBBpe9XZVrfLNO6nbcTWf1xi3Sh050v4K0S997LE8k3xZIfykbjPIuyZi7OXIX6Z0Ujq9qscP2s+lLKsfoq4bR4WYmiVi8rrJ4X35am0tZXzQ7OD8FZmdS0TVA3OKW1DJW+D3qbDwnvGkE7Ge2+yNqyPGPMrgvcNhtlvl0X7FYWuJa8lX/aR+bunrEAm6+FtLTv2Wr2lrnfx3btyzqR2wUa93aTOWtlrnPRVu57CZ7tJ/juW737d1Z7iz3oc26VWIRsVHXCtxf8qy4JgqQ11WI/3DXnefWh9XxRs/WISUPvOna4/cANCQ24R10/IMF9VGLvCNwKAhsKHcFtcNbqifR6t0iuBjywWN7blKi+VW6IU0p9QhglDLtdcXpzoCcfSaTfRh3OWwVY0Yp1HZjtqgOzh6IDvQ3GaNUoD1oF1v3xSVeVnhIIfQct4ntUoif7lqIfMP2wClHSJ0GAic84oZ6vX0e911OxDZJ/tSR5cLlJJ/6dQ+LJnjFx3xTEiojUbT3mjQeZO0DzzoMfj7uMUYpdHlAc8g93YqANKxeN/GfyGE3/ZVzk7OCUHKIe+vXf5hDBPH8OPrNa95fJj2TXQ8uP/Yj//s8UTtpgdHK+wT7WIlKya0RKHkxEAtVnFLJvHFLm49APvaWI1PPVF1UMIpJPMfd8xh5SSNpKE161mvBqNUatq8GuyWny4JLTtfzE1L20zzGoQeBR33O565EHpQbLKGUjkS4QeJrlsfGGSQZLMprCophDOOBiKOgw8HDoQij3Qs7JMA4Chl//9Sztj4vUrCUrnoroMq3KSbEuYqvoLfQbpBpRkwryLvqE/nLA2TCImJdcbhhzN0pGdlWyfd+HuVU9d0GQriHoJi5JghALQiiNQ554wyGmIggimkSSA4LJeyFoDhoARMYfIyjpPK4C9On6UYcFoBkDHnXTiN8PfMOyzKVYpCNi9W0mm8leb4Lun3J6XnvgHtCbpNa9Yr/0/qbpEePFO9TmnO/voFsyL8wDEiP0ZxAlTHslq2ZVUkf2W9P6/xva/9X78v9QSwcI3QrYVVELAABIOAAAUEsBAhQAFAAICAgAE45xQakfvsy0DQAAIB0AACgAAAAAAAAAAAAAAAAAAAAAADRjZDU0NDI1YWJhMmI4NjA5MzQ1MTY5NTUxYmQ4ODQwXEtTZy5wbmdQSwECFAAUAAgICAATjnFBI3Xtjq4JAAC+EgAAKAAAAAAAAAAAAAAAAAAKDgAANDNmMzFmODkwYTExMjJkOTVmNmJiMDJhODhjMmZjZTVcS1NmLnBuZ1BLAQIUABQACAgIABOOcUFFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAA4YAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgAE45xQd0K2FVRCwAASDgAAAwAAAAAAAAAAAAAAAAAbBgAAGdlb2dlYnJhLnhtbFBLBQYAAAAABAAEACoBAAD3IwAAAAA=" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
| + | Die Ableitung (Änderungsrate) von <math>f(g(x))</math> ist ''positiv'', wenn bei einer Vergrößerung von <math>x</math> auch <math>f(g(x))</math> ''zunimmt''. |
| + | |
| + | Die Ableitung ist ''negativ'', wenn bei einer Vergrößerung von <math>x</math> die Werte von <math>f(g(x))</math> ''abnehmen''. |
| + | *Wovon hängt es ab, ob <math>f \circ g</math> eine positive oder negative Ableitung an der Stelle <math>x</math> hat? |
| + | |
| + | (Zur [https://www.geogebra.org/material/show/id/fXcVrbP3 Datei] und zum [https://www.geogebra.org/download?lang=de Programm]) |
| + | |
| + | |
| + | {{#widget:Iframe |
| + | |url=https://www.geogebra.org/material/iframe/id/fXcVrbP3/width/1300/height/730/border/888888/sfsb/true/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/true/rc/false/ld/false/sdz/false/ctl/false |
| + | |width=940 |
| + | |height=574 |
| + | |border=0 |
| + | }} |
Aktuelle Version vom 4. Dezember 2023, 23:32 Uhr
Mit dem blauen Schieberegler kann man den Eingabewert [math]x[/math] der ersten Funktion einstellen.
Das Ergebnis ist der Eingabewert der zweiten Funktion, die das Endergebnis liefert.
- Mit welchen Eingabewerten der ersten Funktion ist das Endergebnis maximal (minimal)?
- Mit welchen Eingabewerten der ersten Funktion ist das Endergebnis Null?
"Wackelt" man am Eingabewert, so kann man die Änderungsrate der einzelnen Funktionen und der Verkettung erkennen.
- An welchen Stellen ist die Änderungsrate der einzelnen Funktionen besonders groß?
- An welchen Stellen ist die Änderungsrate der einzelnen Funktionen Null?
- An welchen Stellen ist die Änderungsrate der Verkettung besonders groß?
- An welchen Stellen ist die Änderungsrate der Verkettung Null?
Die Ableitung (Änderungsrate) von [math]f(g(x))[/math] ist positiv, wenn bei einer Vergrößerung von [math]x[/math] auch [math]f(g(x))[/math] zunimmt.
Die Ableitung ist negativ, wenn bei einer Vergrößerung von [math]x[/math] die Werte von [math]f(g(x))[/math] abnehmen.
- Wovon hängt es ab, ob [math]f \circ g[/math] eine positive oder negative Ableitung an der Stelle [math]x[/math] hat?
(Zur Datei und zum Programm)